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For several species of Pacific salmon (Oncorhynchus spp.) inhabiting coastal 

temperate streams, juvenile fish have been recorded moving between mainstem and 

tributary habitats during the transition from the summer dry season to the winter wet 

season. Such movement that connects summer and winter habitats may be particularly 

important for coho salmon, O. kisutch, because availability of overwintering habitat can 

limit freshwater survival for this species. Here, I describe basin-scale variability in the 

spatial pattern of fall movement for juvenile coho salmon between mainstem and 

tributary streams during the fall of 2002, 2003, 2004, and 2005. Juvenile coho salmon 

were tagged with a passive integrated transponder (PIT) and could be detected at five 

stationary detection sites, two located in perennial tributaries, two in intermittent 

tributaries, and one in the upper mainstem of the West Fork Smith River, Oregon. For 

each detection site, I compare the likelihood of detection during the fall by juvenile coho 

salmon from tagging locations over a multi-kilometer range of distances in each 

direction away from the tributary confluence. I developed logistic regression models 

with data from each detection site to estimate: 1) the relative likelihood of immigration 

into a tributary as compared to emigration out of the tributary, and 2) the relative 

likelihood of immigration into a tributary from the mainstem downstream of the 



 
 

tributary confluence as compared to immigration from the mainstem upstream of the 

confluence. For each pair of directions at each detection site, I also compare the change 

in the likelihood of detection with increasing distance for each direction. Overall, at the 

two upper-river detection sites, juvenile coho salmon were more likely to emigrate than 

to immigrate. At the remaining detection sites, juvenile coho salmon were no more likely 

to emigrate than immigrate. Of these detection sites, fish that immigrated into the mid-

river perennial stream were more likely to come from the mainstem downstream of the 

confluence, whereas fish that immigrated into the two lower-river intermittent 

tributaries were more likely to come from the mainstem upstream of the confluence. Fall 

movement of juvenile coho salmon between tributary and mainstem habitat can occur 

over relatively long distances. This case study demonstrates variation among tributaries 

in the overall likelihood of emigration and immigration and in the source of immigrants 

from the mainstem, which may be related to spatial context that combines the physical 

characteristics and network position of tributary streams. The demonstrated variation in 

fall movement that connects summer and winter habitat within a stream network is a 

first step in exploring how complexity in movement interacts with the spatial 

arrangement and quality of seasonal habitats. More research on the causes of variation 

in the expression of fall movement will improve our understanding of how the spatial 

arrangement of habitat within a stream network influences the survival of juvenile coho 

salmon over the whole freshwater life cycle.   
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CHAPTER 1 

GENERAL INTRODUCTION
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 Movement allows animals to acquire the resources necessary to complete their 

lifecycle and the timing and extent of movement is driven by changes in the life-history 

requirements of an animal (Dingle 1996). Stream fish, and in particular anadromous 

salmonids, display a variety of movement behaviors to achieve growth, survival, and 

reproduction. For anadromous salmonids inhabiting coastal streams in the Oregon, a 

particular concern is how the physical habitat of a stream network interacts with 

movement behaviors to affect the persistence of populations and species and their 

distribution across the landscape. Coastal populations of salmonids in Oregon have 

persisted in stream networks with rugged topography, a high density of small streams, 

and a characteristic seasonal pattern in stream flow with warm, dry summers and mild, 

wet winters (Burnett et al. 2007). Under these conditions, anadromous salmonids may 

have adapted movement behaviors to negotiate seasonally changing habitat conditions 

(Schlosser 1991, Koski 2009). 

 Loss and degradation of freshwater habitat due to anthropogenic factors has 

prompted calls to protect and restore critical salmonid habitat. For coho salmon, 

Oncorhynchus kisutch, the availability and quality of overwinter habitat is thought to be a 

major limit on production (Nickelson et al. 1992). However, while there is some evidence 

that juvenile coho salmon move from summer rearing locations to overwinter habitat 

during the fall, little is known about the spatial characteristics of this movement 

(Skeesick 1970, Bustard and Narver 1975, Scarlett and Cederholm 1983). This is partly 

due to limitations in the methods used to detect the movement of stream fish (Gowan 

and Fausch 2002, Rodriguez 2002). 

This project is the first that addresses the movement of juvenile coho salmon 

throughout a stream network during the fall. The focus of this study is to compare the 
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likelihood of fall movement of juvenile coho salmon between mainstem and tributary 

streams over a multi-kilometer range of potential distances measured from each 

tributary-mainstem confluence.
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CHAPTER 2 

BASIN-SCALE VARIATION IN THE SPATIAL PATTERN OF FALL MOVEMENT 
OF JUVENILE COHO SALMON IN THE WEST FORK SMITH RIVER, OREGON
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INTRODUCTION 

Movement of stream fish has been the focus of considerable theoretical and 

empirical research in ecology (Gowan et al. 1994, Kahler et al. 2001, Gowan and Fausch 

2002, Rodriguez 2002, Hoffman and Dunham 2007, Horton et al. 2011). Several 

investigators have emphasized that seasonal movement in a stream network may be 

critical for some fish species to complete their life cycle (Schlosser 1991, Boughton et al. 

2009). Spatial heterogeneity of stream habitat due to basin geology, land-use, and inputs 

of water, sediment, and organic matter as well as temporal heterogeneity in seasonal 

precipitation, temperature, and disturbance produces riverscapes with a patchy and 

potentially non-overlapping distribution of life-stage-specific habitat types (Frissell et al. 

1986, Fausch et al. 2002, Benda et al. 2004). For example, high-quality winter/spring 

spawning habitat may be located in intermittent streams that offer poor summer rearing 

habitat (Boughton et al. 2009). In temperate and sub-arctic climates with a distinct and 

predictable progression of seasons, stream fish may undergo one or more cycles of 

movement to spring and summer habitat followed by movement to overwintering 

habitat (Schlosser 1991, McCormick et al. 1998). Connectivity among life-history-specific 

habitats is a function of the physical attributes of the stream network (e.g., network 

configuration, stream flow characteristics, presence of barriers) and the ability of fish to 

move. The lack of spatial information about movement during seasonal transitions for 

various life-history stages remains a critical gap in our understanding of stream fish 

habitat requirements in a riverscape.  

Much research on movement ecology of stream fishes has focused on salmonids 

(Oncorhynchus, Salmo, and Salvelinus spp.). In particular, anadromous salmonids exhibit 
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multiple types of movement to complete their life cycle. The long-distance migrations of 

smolts to the ocean and, especially, of adults returning to their natal stream from the 

ocean are well-known and have been fruitful topics of research (Dittman and Quinn 

1996). In addition to migration, anadromous salmonids move during freshwater rearing 

to meet changing seasonal or developmental habitat requirements, for example, the 

initial dispersal of juveniles following emergence from redds in the spring (Hartman et 

al. 1982).  For several species of salmonids inhabiting coastal temperate stream systems 

in the Pacific Northwest, juvenile fish have been recorded moving between mainstem 

and tributary or off-channel habitats during the fall transition from the summer dry 

season to the winter wet season (Skeesick 1970, Bustard and Narver 1975, Peterson 

1982, Scarlett and Cederholm 1983, Bramblett et al. 2002). These observations are 

interpreted as evidence of a seasonal redistribution of at least some portion of the 

population of juvenile salmonids rearing in a stream network. I refer to this 

redistribution during the fall as “fall movement.” Because the availability of overwinter 

rearing habitat is thought to limit the freshwater survival of coho salmon, Oncorhynchus 

kisutch (Nickelson et al. 1992), the connectivity of summer and winter rearing habitat 

through the fall movement of juveniles may be especially important for this species.  

Research on coho salmon has demonstrated consistent temporal characteristics 

of fall movement. Typically, fall movement has been assessed by measuring changes in 

the relative abundance of juvenile coho salmon in a habitat between summer and winter 

surveys (Bustard and Narver 1975, Nickelson et al. 1992, Swales and Levings 1989, Bell 

et al. 2001) or by measuring the number of juvenile fish captured at fish trap weirs while 

moving either into or out of a habitat during seasonal transitions (Skeesick 1970, 

Tschaplinksi and Hartman 1983, Scarlett and Cederholm 1983, Bramblett et al. 2002, 
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Giannico and Hinch 2003). These studies determined that the density and distribution of 

fish in different habitat types and along the longitudinal steam profile differ considerably 

between summer and winter (Nickelson et al. 1992, Reeves et al. 2011) and that the 

number of juvenile coho salmon captured in tributary weir traps immediately upstream 

of a confluence with the mainstem was highest in September through December, with 

increases in daily fish counts coinciding with increases in stream discharge (e.g., 

Skeesick 1970).  Consequently, fall movement of juvenile coho salmon in coastal systems 

from southeastern Alaska to northern California can be characterized as (a) involving a 

large number of fish, but not necessarily the entire population, and (b) occurring over a 

relatively limited time period coincident with changing environmental conditions, 

especially increases in discharge. 

Less is known about the spatial characteristics than the temporal characteristics 

of fall movement for juvenile coho salmon. In most published cases, net movement was 

to a tributary or off-channel habitat from the mainstem (Skeesick 1970, Peterson 1982, 

Tschaplinksi and Hartman 1983). However, contemporaneous movement from tributary 

habitat into mainstem habitat has also been reported (Scarlett and Cederholm 1983, 

Bramblett et al. 2002). Several investigators have emphasized fish moving from 

mainstem habitat into a velocity refuge of either off-channel habitat such as alcoves, 

side-pools, and sloughs (Bustard and Narver 1975, Tschaplinksi and Hartman 1983) or 

tributary streams and ponds (Skeesick 1970, Bramblett et al. 2002, Ebersole et al. 2006). 

Thus, fall movement is presumed to be a behavioral adaptation by juvenile coho salmon 

of directed movement into tributaries and off-channel habitats to avoid the hazard of 

high-velocity winter stream flows (Bustard and Narver 1975, Bell et al. 2001). Although 

these studies used differences in abundance or counts of moving fish to infer the 
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direction of net movement, none specifically characterized whether juvenile coho 

salmon are more likely to immigrate into a habitat than to emigrate from it. Additionally, 

few of the above-cited studies determined the summer rearing location of fish observed 

entering tributaries and off-channel habitats. As a result, the source of immigrants, and 

thus the range of distances and the direction of travel by juvenile coho salmon prior to 

entering tributaries and off-channel areas are unknown. In one exception, Peterson 

(1982) observed marked juvenile coho salmon entering two tributary ponds in the fall; 

one individual moved as far as 32 km downstream, three others moved at least 24 km 

downstream. However, whether these represent typical movement distances is unclear. 

The focus of this study is to compare the likelihood of fall movement of juvenile 

coho salmon between mainstem and tributary streams over a multi-kilometer range of 

potential distances measured from each tributary-mainstem confluence. 

Objective 1: The relative likelihood of immigration and emigration 

My first objective is to evaluate the relative likelihood of movement through a 

confluence during the fall as a function of distance for two groups of juvenile coho 

salmon: 1) potential emigrants, i.e., those fish rearing during the summer in the 

tributary, and 2) potential immigrants, i.e., those rearing during the summer in the 

mainstem. Consistent with current understanding, I hypothesize that fish are more likely 

to immigrate into tributary streams than to emigrate out during the fall, and I investigate 

whether this holds at multiple tributaries within a stream network. This focus on 

movement between multiple tributaries and mainstem habitat is guided by the recent 

emphasis in riverine ecology literature on understanding habitat patchiness and 

biological responses at the intermediate scale of multi-kilometer network segments 
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(Fausch et al. 2002). Tributaries often differ morphologically and hydrologically from 

nearby mainstem habitat because, by definition, tributaries have smaller discharge and 

drainage area (Benda et al. 2004). In addition, tributaries comprising a stream network 

differ from each other in persistent stream attributes such as stream flow, gradient, and 

valley width (Burnett et al. 2007). Because the network position and the size-ratio of 

tributary-mainstem confluences vary among tributaries, the contrast between the 

physical characteristics of tributary habitat and nearby mainstem habitat varies within a 

watershed (Benda et al. 2004). Therefore I expect that the fall movement of stream fish 

between tributary and mainstem habitat will also vary within a stream network.  

Objective 2: The relative likelihood of immigration into tributaries from the 
downstream and upstream mainstem 

In the second objective, I evaluate the relative likelihood of movement into a 

tributary during the fall as a function of distance for two groups of juvenile coho salmon: 

1) those rearing during the summer in the mainstem that are downstream of the 

confluence and must move upstream against the current to reach the tributary, and 2) 

those rearing during the summer in the mainstem upstream of the confluence that must 

move downstream with the current to reach the tributary. While previous research 

emphasized fall movement of juvenile coho salmon between tributaries and the 

mainstem, investigators rarely differentiate between the sections of the mainstem 

upstream and downstream of the confluence. Thus, this objective is exploratory and 

descriptive. Movement models of stream fish typically evaluate the distance of 

movement, (e.g., Rodriguez 2002, Fujiwara et al. 2006) but recent conceptual advances 

identified the importance of accounting for flow directionality and network structure in 

modeling ecological responses (Schick and Lindley 2007, Padgham and Webb 2010). 
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Fish located in the mainstem downstream of the confluence may have a different 

perceptual relationship to the tributary and different physiological costs associated with 

movement, as compared to fish upstream of the confluence (Olden et al. 2004). Thus, the 

two source directions may differ in the relationship between the distance of movement 

and the likelihood of a fish moving to the confluence. However, I expect that because 

tributaries vary by network position and by degree of hydrological and morphological 

contrast with the mainstem, the relative likelihood of immigration from the mainstem 

above and below a confluence will vary substantively among tributaries. Differences in 

the relative likelihood of movement between the source direction of immigration among 

tributaries may suggest testable hypotheses about the process(es) driving fall 

movement. 

Summary of Approach 

To address these objectives, I consider the specific case of juvenile coho salmon 

tagged with passive integrated transponders (PIT-tags) throughout the West Fork Smith 

River in western Oregon, USA (Ebersole et al. 2006, Ebersole et al. 2009a). I used 

information about fish tagged during the previous summer that pass through one of five 

stationary detection sites—located in four tributaries immediately upstream of their 

confluence with the mainstem and at one upper mainstem site—during the fall transition 

period of 2002, 2003, 2004, and 2005. For each detection site, I constructed two logistic 

regression models to examine the relationship between the relative likelihood of 

detection during the fall and the distance and direction of summer tagging locations. I 

used the relative likelihood of detection as an indicator of the relative likelihood of 

movement. First, I compare the likelihood of detection for fish emigrating from the 
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tributary to the likelihood of detection for fish immigrating into the tributary at each 

detection site during the fall. Second, I compare the likelihood of detection for fish 

immigrating from mainstem locations downstream of the confluence to the likelihood of 

detection for fish immigrating from locations in the mainstem upstream of the 

confluence. To better understand the underlying patterns of emigration and the two 

directions of immigration at a detection site, I also estimate the effect of the distance 

between the detection site and tagging locations on the likelihood of detection from each 

direction. I then qualitatively compare the relative likelihood of detection for each pair of 

directions among the tributaries to identify basin-scale variation in the pattern of fall 

movement.
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METHODS 

Field Study 

Study area 

The West Fork Smith River (WFSR, Figure 1) drains a 69-km2 basin in the 

Umpqua River basin of the Oregon Coast Range and was the subject of a multi-year study 

on the survival and growth of juvenile coho salmon conducted from the summer of 2002 

to the summer of 2006 (Ebersole et al. 2006, Ebersole et al. 2009a, Ebersole et al. 2009b, 

Wigington et al. 2006). Elevation in the basin ranges from 60 to 869 m and bedrock 

consists of mostly Tyee sandstone. Overstory vegetation is relatively young multi-aged 

forest dominated in the uplands by Douglas-fir (Pseudotsuga menziesii), and in riparian 

areas by red alder (Alnus rubra) and bigleaf maple (Acer macrophyllum). Mean annual 

precipitation of 2,057 mm occurs predominately as rain in the late fall through early 

spring. Douglas County has operated a stream gauge since 1981 on the WFSR mainstem 

near the confluence with the Smith River. Highest stream flows occur during the wet 

season of November through March, with peak flows typically in December and January. 

Summer stream flows are low due to the lack of rainfall during this period. Even though 

seasonal patterns of stream discharge are relatively predictable, annual differences in 

stream flow do occur. In the mainstem, minimum daily summer stream flows at the 

gauging station near the mouth of the WFSR were 0.03, 0.03, 0.07, and 0.05 m3·s-1 during 

2002, 2003, 2004, and 2005, respectively. Maximum daily winter stream flows for these 

same years were 43.3, 57.5, 23.4, and 66 m3·s-1, respectively.  

At the 1:24 000 map scale, the WFSR stream network consists of a mainstem and 

five major tributaries (Figure 1), for a total stream length of 47 km (Ebersole et al. 2006). 

Ebersole et al. (2009a, 2009b) defined three classes of streams within the basin based 
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upon summer stream flow characteristics (Table 1). Moore Creek and Crane Creek were 

classified as intermittent tributaries, as summer surface flows can cease as early as July, 

leaving only isolated pools in some sections until rains commence in the fall. Beaver 

Creek, Gold Creek, Coon Creek, and the upper WFSR (above Gold Creek) were classified 

as perennial tributaries (Figure 1) and maintained flows during all summer months. The 

WFSR below the confluence of Gold Creek was classified as mainstem, and was 

distinguished from the perennial tributaries on the basis of low summer stream flow, 

which was approximately twice the low flow of any tributary below the confluence of 

Gold Creek and the upper West Fork (Ebersole et al. 2009a). 

Additional attributes of the study streams (Table 1) were recorded in the field 

(Ebersole et al. 2006, Ebersole et al. 2009a,b) or obtained from a synthetic stream 

network derived from a 10-m digital elevation model (DEM) (Clarke et al. 2008). Stream 

length to the end of fish distribution was calculated from a field survey coincident with 

fish tagging efforts (see below). Total drainage area and the ratio of drainage area 

between the tributary and mainstem were determined from the synthetic stream 

network at the confluence of each tributary stream with the mainstem. Reach delineation 

in the synthetic stream network was automated and intended to yield reach lengths of 

approximately 40 times the active channel width (Clarke et al. 2008). I calculated stream 

length-weighted average of coho intrinsic potential (Burnett et al. 2007)—a function of 

stream gradient, valley width, and estimated mean annual flow—for the synthetic 

stream network reaches between the endpoints of fish tagging efforts (see below) in 

each tributary. Intrinsic potential is a measure of the capacity of a stream to provide 

high-quality habitat for coho salmon, and a value of greater than 0.75 is considered high 

intrinsic potential (Burnett et al. 2007).
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Figure 1: Location of West Fork Smith River in Oregon, U.S.A., and map of study stream 
network. Line colors indicate reach-values of intrinsic potential (IP). High IP is greater 
than > 0.75, medium is 0.25-0.75, and low is < 0.25. Approximate locations of detection 
sites near the confluences of study tributaries with the mainstem are indicated. 
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Table 1: Characteristics of study tributaries in the West Fork Smith River, OR. Stream class, based on summer streamflows, was 
defined by Ebersole et al. (2009a) and can be either perennial or intermittent. Distance to upstream-most fish tagging location is 
for tagging locations used in analysis (see below). The number of reaches is from the synthetic stream network (Clarke et al. 2008) 
and was the basis for determining length-weighted averages for gradient and intrinsic potential. All metrics for the Upper 
Mainstem site are with reference to the detection site placement; there is no confluence at the Upper Mainstem detection site. See 
subsequent sections on fish tagging and detection sites for more information. 

Tributaries Streamflow class 

Length of fish 
bearing channel 
(m) 

Distance to 
upstream-most 

fish tagging 
location from 

confluence (m) 

Distance to   
confluence 

from the mouth 
of WFSR (m) 

Drainage 
area at 

confluence 
(km2) 

Tributary: 
mainstem 

drainage area  
Upper Mainstem Perennial 5859 4851 20 177 15.04 N/A 
Gold Perennial 5231 5038 16 560 8.61 0.41 
Beaver Perennial 6014 4528 15 755 7.89 0.26 
Moore Intermittent 3338 2151 8717 4.65 0.11 
Crane Intermittent 3301 2084 6748 4.45 0.09 

Tributaries 
Number of 
reaches  

Length-
weighted 

average 
gradient [Min., 

Max.] 

Length-weighted 
average coho 

intrinsic potential 
[Min., Max.] 

Distance to 
detection site 

from tributary 
confluence (m) 

Date of 
detection 

site 
installation 

Upper Mainstem 33 
0.0203  

[0.007, 0.065] 
0.67 

[0.14, 0.95] N/A 11/14/2003 

Gold 37 
0.0261  

[0.009, 0.071] 
0.61 

[0.14, 0.93] 38 11/7/2002 

Beaver 35 
0.0128  

[0.007, 0.047] 
0.79 

[0.33, 0.95] 25 11/8/2002 

Moore 21 
0.0149  

[0.011, 0.03] 
0.75  

[0.58,0.92] 205 11/14/2002 

Crane 22 
0.0163  

[0.015, 0.021] 
0.83 

[0.70, 0.89] 25 10/8/2003 
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Intensive forest harvest and road-building activities have occurred in the WFSR 

basin, similar to that in other Oregon coastal basins (Ebersole et al. 2006). As a result, the 

WFSR stream network is characterized by a reduction in the amount of in-stream large 

wood, altered stream channels, and associated losses of spawning and rearing habitat for 

salmon. The mainstem below the Gold Creek confluence was subjected to splash 

damming as late as 1935 and still contains relatively little wood or gravel (Miller 2010). 

The U.S. Bureau of Land Management has installed boulder-weir and large-wood 

restoration structures to redress some of this habitat degradation (Ebersole et al. 

2009a). Each of the study tributaries flows through a culvert near its confluence with the 

mainstem WFSR. Movement of juvenile and adult coho salmon is uninhibited by culverts 

(Ebersole et al. 2006). 

Fish tagging 

The field data for this study were initially collected as part of a study to 

determine stream network variation in overwinter survival and growth of juvenile coho 

salmon. Details of field methods are reported in Ebersole et al. (2006, 2009a,b) and 

briefly described here. In the early summer of 2002, aluminum flashers were attached to 

stable bankside objects such as rocks or large trees at approximately 50-m intervals 

along the entire length of the WFSR including Coon, Crane, Moore, Beaver, and Gold 

Creeks to provide reference locations for subsequent fish tagging and relocation data 

(Ebersole 2006). In 2002, locations where fish were tagged were subjectively selected in 

the first 800 m of each tributary upstream of its confluence with the mainstem and in the 

400 m of mainstem upstream and downstream of the Gold, Beaver, and Moore Creek 

confluences. In 2003, additional tagging locations were selected from nine 400-m 
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reaches: three around the Crane Creek confluence, one each in the upper portion of Gold, 

Beaver, Moore, and Crane Creeks, and two in the upper mainstem. In 2004 and 2005, 

tagging locations were chosen from thirty 300-m-long reaches systematically selected 

from a random start (Ebersole et al. 2009a). Tagging locations in 2004 and 2005 

overlapped with each other, but only some tagging locations from 2004 and 2005 

overlapped with those from 2003 and 2002. For my purposes, each tagging reach was 

subdivided into non-overlapping tagging locations at 50-m intervals. 

At each tagging location, juvenile coho salmon were collected in the late summer 

and early fall (Table 2).  Ebersole et al. (2006, 2009a) set a target of 400 fish per reach, 

but the number of fish tagged at each tagging location within each reach was not 

consistent. Fish were collected by seining at tagging locations, then anesthetized and 

measured. If a fish was longer than 60-mm fork length, it was implanted with a randomly 

assigned 11-mm PIT tag before being returned to its habitat unit of origin (for details on 

tagging see Ebersole et al. 2006, 2009a).  Each individual tagged fish was assigned a 

spatial reference code corresponding to the aluminum flasher marker nearest its habitat 

unit of origin, thus fish tagged up to 25-m upstream or downstream of each flasher were 

assigned the same tagging location.   

Detection sites 

Stationary PIT-tag detection sites were positioned in five locations throughout 

the WFSR basin—one each in Gold, Beaver, Moore, and Crane Creeks and the Upper 

Mainstem (Table 1 and Figures 1 and 2). Each detection site consisted of a Destron-

Fearing FS1001 transceiver powered by deep-cycle batteries (Ebersole et al. 2006, 

2009a). A rectangular antenna (3.3 x 1.2 m) was positioned perpendicular to the 
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streamflow and bracketed with weir panels to capture all but the highest streamflows. 

The Upper Mainstem site consisted of three of these rectangular antennas arrayed end-

to-end to span the width of the stream at a bridge crossing. Tagged fish passing through 

the antenna field were recorded continuously by a laptop computer attached to the 

transceiver. The data for each fish detection event consisted of the PIT tag identification 

number, date, and time of each detection. The majority of detected fish were detected 

only once, whereas others were detected multiple times at one or more antenna. Fish 

passing through any of the three antennas at the Upper Mainstem were assigned the 

same detection site location. 

Conceptual Structure and Assumptions 

Fall transition period 

I define the fall transition period for juvenile coho salmon based on three 

assumptions: 1) fish tagged before the fall transition are in their summer rearing 

locations and, on average, juvenile coho salmon do not move more than 50 m in either 

direction during the summer (Kahler et al. 2001); 2) fall movement of fish is cued by an 

increase in stream discharge (Skeesick 1970, Scarlett and Cederholm 1983); and 3) fish 

displacement and mortality are relatively limited from late summer through the fall 

transition. The onset of fall storms in the Oregon Coast Range appears in a hydrograph as 

a sharp increase in stream flow above summer base levels, and flows rarely return to 

summer levels once fall storms begin. I define the onset of the fall transition for each 

year using the metric of Lawson et al. (2004), as the first calendar day starting from 

August 15th when an 11-day unweighted moving average exceeded the average 
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September base flow by a factor of three. I calculated the average September base flow as 

the 25-year mean daily flow for the first week of September from 1981 to 2006.  

Winter in the Oregon Coast Range is characterized by base flows that are 

substantially higher than summer flows punctuated by sharp, temporary increases in 

discharge caused by storms. Peak stream flows associated with winter storms are 

thought to be the primary mechanism of displacement and mortality for juvenile coho 

salmon during winter in Pacific coastal streams (Giannico and Healey 1998, Bell et al. 

2001). To limit the influence of fish detections related to winter storm-mediated 

displacement and mortality on fish detections in the analysis, I defined the end of the fall 

transition period as three days before the first date on which mean daily-flow exceeded 

the 98th percentile mean dailyflow for that year. 

Table 2: Dates of fish tagging and the fall transition for each study year in the West Fork 
Smith River, OR. Onset of the fall transition was defined based on the metric of Lawson et 
al. (2004). Juvenile coho salmon that were PIT tagged after the start of the fall transition 
were excluded from all analyses of fall movement for that study year. 

Year 
Dates of fish 
tagging 

Dates of fall 
transition 

2002 08/19 – 11/14 11/06 – 12/14 
2003 08/25 – 10/30 11/11 – 12/11 
2004 08/16 – 12/25 09/14 – 12/06 
2005 08/15 – 09/28 10/25 – 12/20 
 
Selection of tagging record based on fall transition period 

My interest is in movement from summer tagging locations to the detection sites 

in the fall, so I restricted analysis to fish that were tagged in summer. Thus, if tagging 

efforts extended beyond the date of onset of the fall transition period, only the subset of 

fish tagged before this date were used. This primarily affects the 2004 study year when 

the onset of the first fall freshet was unusually early (Table 2). Because of changes in 
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field study from year to year (Ebersole et al. 2006, 2009a) and the subsetting of tagged 

fish based on fall transition criteria, the spatial distribution of tagging locations and the 

number of fish tagged in each tagging location varied among years (Figure 2). 
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Figure 2: Spatial distribution of summer tagging locations in the West Fork Smith River, 
OR, and number of fish at each tagging location after selecting only fish tagged in the 
summer in (a) tributaries, and(b) mainstem for each year. In panel (b), 𝑛 is the total 
number of fish tagged before the fall transition in the stream network each year and 
includes both mainstem and tributary tagging locations. Long dashed lines in mainstem 
graph (b) represent the position of tributary confluences. Short dashed lines in tributary 
(a) and mainstem graphs (b) represent the locations of the detection sites (antennas).  
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Detection efficiency assumption  

Stationary PIT tag monitors, like other sampling methods, have an imperfect 

probability of detecting a tagged fish when present, termed detection efficiency (Horton 

et al. 2007). Detection efficiency can be affected by large changes in stream flows and by 

ambient radio-frequency interference (Zydlewski et al. 2006). Spot-checks on antenna 

operation and maintenance (battery swap, data retrieval, antenna tuning) were 

performed regularly throughout the fall transition period. I assume that since the fall 

transition period, by definition, contained relatively moderate fluctuations in water 

levels and antennas were regularly maintained, detection efficiency at a single detection 

site can be treated as consistent within the fall transition in a given year.  

Temporal consistency in detection efficiency among years was assessed by 

performing 1-11 passes (mean: 5) of an 11-mm dummy PIT tag through the antenna field 

at an orientation perpendicular to the antenna field approximately once per a month 

starting in April, 2004 through December, 2005. These tests indicate that with the 

exception of Crane Creek, detection efficiency at a single detection site was fairly 

consistent between years (Table 3). All antennas were operational for the entirety of the 

fall transition period, except for Moore Creek in 2002. Given these considerations, I 

excluded Crane Creek data in 2005 and Moore Creek data in 2002 from all analyses of 

movement. Although the efficiency tests with a dummy tag cannot be assumed to be the 

same as efficiency of tagged fish (Zydlewski et al. 2006) because fish travel through the 

water column and dummy tags were floated on the surface, I assume that detection 

efficiency for PIT-tagged fish during the fall transition can be treated as an unknown 

constant across years at a single study site. The efficiency tests with dummy tags also 

provide some evidence that the detection efficiency is relatively similar among detection 
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sites within any year (Table 3), thus I assume that the detection efficiency of tagged fish 

is equal among detection sites.  

Table 3: Yearly average of monthly antenna efficiency estimates [standard error] for 
multiple passes (1-11) of a dummy 11-mm PIT tag oriented perpendicular to the 
antenna field for each detection site in the West Fork Smith River, OR. The Upper 
Mainstem site consisted of three separate antennas spanning the width of the stream 
(MSC1-3).  

Year MSC1 MSC2 MSC3 
Gold 
Creek 

Beaver 
Creek 

Moore 
Creek 

Crane 
Creek 

2004 0.95 
[0.046] 

0.90 
[0.066] 

0.97 
[0.035] 

0.84 
[0.061] 

1.0  
[0] 

0.81 
[0.088] 

0.92 
[0.055] 

2005 0.98 
[0.016] 

0.97 
[0.017] 

0.98 
[0.016] 

0.96 
[0.026] 

1.0 
[0] 

0.96 
[0.026] 

0.34 
[0.058] 

    

Construction of data sets from fish detection records 

Evaluating dates of the fall transition period as defined based on the hydrograph 

I evaluated whether the fall transition, as defined by the hydrograph, 

corresponded with temporal patterns of fish movement in the WFSR consistent with 

patterns documented in other systems. Reports of movement through weir traps in other 

Pacific coastal rivers typically show the number of juvenile coho salmon increasing with 

the first fall storms and largely subsiding with the onset of winter (e.g., Skeesick 1970, 

Tschaplinksi and Hartman 1983, Bramblett et al. 2002). I plotted a time series for each 

year of the daily rate of fish detection from the late summer to early winter and 

maximum daily flow recorded at the gauging station near the mouth of the WFSR.  I 

defined the daily rate of fish detection as the number of unique fish detected per day, 

summed across all detection sites, out of the total number of fish tagged. From the record 

of antenna detections at each detection site, I identified the set of unique fish tagged at 
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each tagging location that were detected on each day of the year after the start of the 

tagging effort until the end of the calendar year. This enabled me to qualitatively 

compare the temporal pattern of fish movement for the fall, for the first winter storm, 

and for a few days after. If a fish was detected multiple times on a single day, only the 

first detection was counted. If a fish was detected on multiple days, the first detection for 

each day was counted. If a fish was detected at multiple detection sites, one detection per 

day per detection site was counted.  

Data sets for statistical models 

I constructed data sets for logistic regressions models based on the spatial 

relationship of tagging locations to detection sites. Observed fish detections and tagging 

locations from the four study years were combined because I am interested in detecting 

a general pattern and not in differences among years. Because the tagging locations 

changed from year-to-year, using data from all years provides information from more of 

the basin. The average observed proportion of fish detected from any tagging location at 

any detection site across all years during the fall transition was 0.0163 (standard error: 

0.0004). Given the relatively low average detection rate, I chose to omit locations where 

20 or fewer fish were tagged because observations of the proportion of fish detected in 

such situations will have unacceptably low precision.  

Based on the subset of fish tagged prior to the onset of fall migration, at each 

detection site, I identified the set of unique fish tagged at each tagging location that were 

detected at least once during the fall transition (𝑌𝑖). If a fish was detected multiple times 

at a single detection site during the fall transition, only the first detection was counted. If 

a fish was detected at more than one detection site during the fall transition period, the 
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first detection of that fish at each detection site was used. Thus for each paired tagging 

location-detection site in each year, I have the total number of fish that were tagged 

before the fall transition(𝑚𝑖) and the number of fish detected at the detection site (𝑌𝑖).  

The stream distance of each tagging location from each detection site (𝑋𝑖) was calculated 

from the flasher dataset by summing all the between-flasher increments of distance 

between the tagging location and detection site. Direction codes were assigned to each 

tagging location/antenna pair according to the objective being addressed. 

Tributary immigration and emigration 

I defined immigration as movement from tagging locations outside of the study 

tributary to the detection site (assigned the code “MSIN”). I defined emigration as 

movement from locations upstream of the detection site in the tributary to the detection 

site (assigned the code “TOUT”). I compared emigration and immigration over 

approximately the same range of distances for each detection site. Therefore, tagging 

locations in the MSIN direction were excluded if the distance to a detection site was 

greater than the corresponding distance to the furthest tagging location in the TOUT 

direction. Additionally, tagging locations less than 50 m away from the detection site 

were excluded to limit detections due to the typical short distance movements of 

juvenile coho salmon, which may be common at less than 50 m (Kahler et al. 2001). 

Immigration into tributaries from the upstream and downstream mainstem  

I defined upstream movement into the tributary from locations in the mainstem 

downstream of the confluence the code, “MSUP.” I defined downstream movement from 

locations in the mainstem upstream of the confluence the code, “MSDN.” The Upper 

Mainstem detection site was not located at a tributary confluence and so it is not 
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included in the second objective. Because of the exploratory nature of the second 

objective and because fish may move long distances, I did not restrict the range of 

distances for this objective. However to limit the potential influence of a large number of 

tagging locations with zero detections, this data set was constrained by excluding tagging 

locations farther away than the farthest tagging location with at least one detection. 

Statistical analysis 

The effect of unknown detection efficiency 

The issue of imperfect detection has plagued wildlife and fisheries research 

(Burnham et al. 1987, MacKenzie et al. 2005).  When imperfect detection is expected, 

research studies are typically designed to estimate detection efficiency simultaneously 

with occurrence at a location (MacKenzie et al. 2005). In this study, repeated 

observations were not conducted and detection efficiency is not known. However, I 

demonstrate that odds ratios from logistic regression are interpretable under the 

assumption of constant detection efficiency. 

I expect that the probability of movement to a given detection site is affected by 

the distance and direction of a tagging location away from the site but that detection 

efficiency at that site is the same for any fish in any year that moves to the site, no matter 

its origin. As such, I can consider the probability of detection as a relative measure of the 

probability of movement to a given detection site. Logistic regression can be used to 

compare the relative odds or likelihood of detection (Burnham et al. 1987, Ramsey and 

Schafer 2002). Here, I am interested in the relative likelihood that a fish moves from a 

tagging location to the detection site given the unknown detection efficiency. Without 

information about the detection efficiency, estimates of the probability of movement (not 
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probability of detection) from logistic regression are biased (Burnham et al. 1987).  

However, in the next section I develop a logistic regression model for the number of 

detected fish that incorporates the unknown detection efficiency and the likelihood of 

movement.  I derive upper and lower bounds on the estimated odds ratio of movement 

and show that although the estimated odds ratio is biased, the true value of the ratio can 

only be more extreme (further away from a 1:1 ratio) than the estimated value.  I use 

logistic regression to generate biased estimates of odds ratios to compare the likelihood 

of movement for different groups of fish. I then use those estimates to qualitatively 

describe the true relative likelihood of movement.  

The statistical model 

The number of fish detected, 𝑌, out of the number of fish tagged, 𝑚, can be 

modeled as a binomial random variable where the binomial parameter, 𝑝, is the 

probability that a fish is detected. Specifically, let 𝑝𝑗𝑘(𝑑𝑖) be the probability of detecting a 

fish at the 𝑗𝑡ℎ detection site from a tagging location that is 𝑑𝑖  meters from the detection 

site in the 𝑘𝑡ℎ direction. A fish will be detected at an antenna if it moves to the antenna 

and it is detected.  Thus, the probability of detection is the product of the probability of 

movement and the unknown detection efficiency. Let 𝜃𝑗 be the detection efficiency, or 

the probability of detecting a fish at the 𝑗𝑡ℎ detection site if it is present. Let 𝜆𝑗𝑘(𝑑𝑖) be 

the probability a fish moves to 𝑗𝑡ℎ detection site from a tagging location at 𝑑𝑖  meters in 

𝑘𝑡ℎ direction. Then, the expected value of the number of fish detected is: 

𝐸[𝑌] = 𝑝𝑗𝑘(𝑑𝑖) ∗ 𝑚 = 𝜃𝑗 ∗ 𝜆𝑗𝑘(𝑑𝑖) ∗ 𝑚 

The odds ratios comparing the probability of detection between two tagging 

locations can be represented as: 
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𝑝𝑗𝑘(𝑑1) 1 − 𝑝𝑗𝑘(𝑑1)⁄
𝑝𝑗𝑘(𝑑2) 1− 𝑝𝑗𝑘(𝑑2)⁄ = 𝜔𝚥�(𝑑1,𝑑2), where 𝑑1  ≠  𝑑2  

However, I am interested in the odds ratio comparing the probability of 

movement to the detection site from two tagging locations:  

𝜔𝑗𝑘(𝑑1,𝑑2) =  
𝜆𝑗𝑘(𝑑1) 1 − 𝜆𝑗𝑘(𝑑1)⁄
𝜆𝑗𝑘(𝑑2) 1 − 𝜆𝑗𝑘(𝑑2)⁄   

Bias in the odds ratio of detection 

Here, I demonstrate that the odds ratio of detection is less extreme (closer to a 

1:1 ratio) than 𝜔𝑗 and that the difference is a function of 𝜃𝑗.  

I simplify the notation to 𝜔𝚥� = 𝑝1 1−𝑝1⁄
𝑝2 1−𝑝2⁄  and observe that: 

𝜔𝚥� =
𝑝1 1 − 𝑝1⁄
𝑝2 1− 𝑝2⁄  

= �
𝜃𝑗𝜆1

1 − 𝜃𝑗𝜆1
� ∗ �

1 − 𝜃𝑗𝜆2
𝜃𝑗𝜆2

� 

= �
𝜆1

1 − 𝜆1
� ∗ �

1 − 𝜆2
𝜆2

� ∗ �
1 − 𝜃𝑗𝜆2
1 − 𝜃𝑗𝜆1

� ∗ �
1 − 𝜆1
1 − 𝜆2

� 

= 𝜔𝑗 ∗ ��
1 − 𝜃𝑗𝜆2
1 − 𝜃𝑗𝜆1

� �
1 − 𝜆1
1 − 𝜆2

�� 

               I denote ��
1 − 𝜃𝑗𝜆2
1 − 𝜃𝑗𝜆1

� �
1 − 𝜆1
1 − 𝜆2

��  as the factor, κ. 

Consider the case where 𝜆1 >  𝜆2. Then 𝜔𝑗 > 1 and we have: 

𝜆1 > 𝜆2 

(1 − 𝜃𝑗)𝜆1 ≥  (1 − 𝜃𝑗)𝜆2 

𝜆1 − 𝜃𝑗𝜆1 ≥  𝜆2 − 𝜃𝑗𝜆2 

𝜆1 + 𝜃𝑗𝜆2 ≥  𝜆2 + 𝜃𝑗𝜆1 
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−(𝜆1 + 𝜃𝑗𝜆2) ≤ −(𝜆2 + 𝜃𝑗𝜆1) 

1 − (𝜆1 + 𝜃𝑗𝜆2) + 𝜃𝑗𝜆1𝜆2 ≤ 1 − �𝜆2 + 𝜃𝑗𝜆1� + 𝜃𝑗𝜆1𝜆2 

�1 − 𝜃𝑗𝜆2�(1 − 𝜆1) ≤ �1 − 𝜃𝑗𝜆1�(1 − 𝜆2) 

�
(1 − 𝜃𝑗𝜆2)(1− 𝜆1)
(1 − 𝜃𝑗𝜆1)(1− 𝜆2)

� ≤ 1 

𝜅 ≤ 1 

It follows that: 

𝜔𝚥� = 𝜔𝑗 ∗ 𝜅 ≤ 𝜔𝑗 

This means that the odds ratio of detection is less than the odds ratio of 

movement. Next consider that we have fixed values of 𝜆1,𝜆2. Observe that when the 

detection efficiency, 𝜃𝑗, approaches one, 𝜔𝚥� approaches 𝜔𝑗: 

lim
𝜃𝑗→1

𝜅 = lim
𝜃𝑗→1

�
(1 − 𝜃𝑗𝜆2)(1− 𝜆1)
�1 − 𝜃𝑗𝜆1�(1− 𝜆2)

� = 1 

Thus: 

lim
𝜃𝑗→1

 𝜔𝚥� =  lim
𝜃𝑗→1

𝜔𝑗 ∗ 𝜅 = 𝜔𝑗 

Similarly, observe that when the detection efficiency approaches zero, we have: 

lim
𝜃𝑗→0

𝜅 = lim
𝜃𝑗→0

�
(1 − 𝜃𝑗𝜆2)(1− 𝜆1)
�1 − 𝜃𝑗𝜆1�(1 − 𝜆2)

� = �
1 − 𝜆1
1 − 𝜆2

� 

Thus: 

lim
𝜃𝑗→0

𝜔𝚥� =  lim
𝜃𝑗→0

𝜔𝑗 ∗ 𝜅 

= 𝜔𝑗 ∗ �
1 − 𝜆1
1 − 𝜆2

� 

=
𝜆1
𝜆2

 

So, to summarize, if 𝜆1 >  𝜆2 then 𝜔𝑗 > 1, 𝜅 ≤ 1 and we have: 
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1 <
𝜆1
𝜆2

< 𝜔𝚥� ≤ 𝜔𝑗 

Similarly, if 𝜆1 <  𝜆2 then𝜔𝑗 < 1, 𝜅 ≥ 1  and we have: 

𝜔𝚥� = 𝜔𝑗 ∗  𝜅 ≥ 𝜔𝑗 

1 >
𝜆1
𝜆2

> 𝜔𝚥� ≥ 𝜔𝑗 

Within a detection site, if the true odds ratio of detection is greater than one, the 

true odds ratio of movement is greater than the true odds ratio of detection and thus also 

greater than one.  

I use logistic regression to estimate odds ratios comparing the likelihood of 

detection between specific groups of fish (e.g., emigrants and immigrants, fish from 

different distances). Based on the derivation above, I know that the odds ratio for 

movement will be more extreme than the odds ratio I estimate.  I use this idea to draw 

conclusions about the odds ratio of movement. 

If the detection efficiency, 𝜃𝑗, differs among detection sites, the relationship 

between the odds ratio of detection and the odds ratio of movement will also differ. 

Thus, comparisons among odds ratios between detection sites will not be meaningful. 

Although there is some evidence to support the assumption of equal detection 

efficiencies (Table 3), I use direct numerical comparison of odds ratios from different 

detection sites only for evaluating the effect of increasing distance on the odds of 

detection for a fixed direction (see odds ratio between two distances section). The odds 

ratio between two distances may provide a potential explanation for patterns observed 

in my main interest, the odds ratio of movement between directions (e.g., 

emigration/immigration, upstream mainstem/downstream mainstem). For the odds 
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ratio between two directions I am interested in whether this ratio is different than one. 

Even if there are differences in detection efficiency among sites, the qualitative 

assessment of the pattern in the odds ratio between two directions will hold.   

Full regression model specification 

I used logistic regression to model the ratios of the odds of detection between 

directions at each detection site as a function of the distance of tagging locations away 

from the detection site. I treated the number of fish detected at a site from each tagging 

location as the response variable, 𝑌𝑖 . I modeled  𝑌𝑖 using an overdispersed binomial 

distribution where  𝑝𝑖 is the true proportion of total number of tagged fish (𝑚𝑖) detected 

from the 𝑖𝑡ℎ tagging location and the variance of  𝑌𝑖  is given by the full model. I plotted 

the empirical logit and empirical proportion against distance to determine the proper 

scale to use for distance. Based on these plots, I chose to use the logarithm of distance as 

an explanatory variable.  

For each detection site, I fit a full model for each objective that contained 

explanatory variables for the logarithm of distance, the categorical direction variable, 

MSIN or TOUT for objective 1 and MSUP or MSDN for objective 2 (excluding the Upper 

Mainstem), and an interaction term between the logarithm of distance and direction:  

log(
𝑝𝑖

1 − 𝑝𝑖
) =  𝛽0 + 𝛽1𝑑𝑖 + 𝛽2𝐼𝑖 + 𝛽3𝐼𝑖𝑑𝑖 

Where, 

𝛽0 is the intercept parameter for the MSIN or MSDN direction.  

𝛽1 is the slope parameter that describes the relationship between the logit of detection 

and the logarithm of distance for the MSIN or MSDN direction. 
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𝛽2  is the parameter for the difference in intercept between TOUT and MSIN or MSUP and 

MSDN directions. 

𝛽3, is the parameter for the difference in slope between TOUT and MSIN or MSUP and 

MSDN directions. 

𝐼𝑖 is an indicator variable which is equal to one if the 𝑖𝑡ℎ  tagging location is in the TOUT 

direction or the MSUP direction and is equal to zero otherwise. 

𝑑𝑖  is the logarithm of the distance between the 𝑖𝑡ℎ  tagging location and the detection 

site. 

The full model represents the hypothesis that the odds of movement from one 

direction is greater than the odds of movement from the other direction over at least 

some interval of distance and that the rate of change in the odds of detection with 

increasing distance differs between the two directions. 

Model fit 

Estimates for overdispersion of all candidate models were produced. 

Overdispersion increases the standard error estimate for parameters compared to a 

model without overdispersion by a factor equal to the square root of the overdispersion 

estimate (Ramsey and Schafer 2002). There is no formal statistical goodness-of-fit test 

for overdispersed data. Therefore, deviance residuals for each model were examined to 

identify models that did not fit the data. If any outliers or high leverage points were 

apparent for a model, each was temporarily removed one at a time and the models were 

refit and examined for qualitative changes in results. If a qualitative change was 

indicated, I evaluated the point as a potential data error. If no error was apparent, I 

reported results for the model with the point included. 
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If the estimate of the overdispersion parameter for any model was less than or 

equal to one, I used a binomial distribution to model the odds ratios. The goodness of fit 

for binomial models was checked with the same previously described procedure. 

Alternative models and model selection 

I compared the support in the data for the full model to the support for each of 

the simpler models listed below:  

i. A null model representing the hypothesis that the odds of detection do 

not change with distance or direction. 

ii. A model representing the hypothesis that the odds of detection change 

with direction, but do not change with distance. 

iii. A model representing the hypothesis that the odds of detection change 

with distance, but that there is no difference in the odds between 

directions. 

iv. A model representing the hypothesis that the odds of detection change at 

the same rate with increasing distance for both directions, but that the 

odds of movement from one direction is greater than the other direction 

for the entire range of distances considered. 

v. The full model as described above. 

I compared models using qAIC (quasi-Akaike Information Criteria) statistics for 

models that were overdispersed (Burnham and Anderson 2002). The calculation of qAIC 

depends on the overdispersion parameter. I used the overdispersion parameter of the 

full model for each objective at each detection site as the common parameter to calculate 
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qAIC in each model. If the common overdispersion parameter was estimated to be less 

than or equal to one, models were compared with AIC statistics. Small values of qAIC (or 

AIC) indicate more support in the data for that model. If any models had a qAIC (or AIC) 

of less than two units from the minimum, the model with the fewest parameters was 

chosen (Burnham and Anderson 2002). 

Odds ratio between two distances for a fixed direction 

For both objectives, I expect fish that are closer to a detection site in summer will 

be more likely to be detected during the fall than fish that are further away in the same 

direction. Since I used the logarithm of distance as the explanatory variable, I calculated 

the odds ratio for each doubling of distance for a fixed direction. 

I show this derivation of the odds ratio for a doubling of distance between two 

locations from which fish emigrate to a single detection site. Suppose that the second 

location is twice as far from the detection site than the first location and let 𝑑1 and 𝑑2 

represent the distance from the detection site so that 𝑑2 = 2 ∗ 𝑑1. Under model v (the full 

model) for objective 1, the log odds of detection for emigration (from the TOUT 

direction) for distances 𝑑1 and 𝑑2 are: 

ln(
𝑝𝑇𝑂𝑈𝑇(𝑑1)

1 − 𝑝𝑇𝑂𝑈𝑇(𝑑1)
) = 𝛽0 + 𝛽1 ∗ ln(𝑑1) + 𝛽2 + 𝛽3 ∗ ln(𝑑1) 

ln(
𝑝𝑇𝑂𝑈𝑇(𝑑2)

1 − 𝑝𝑇𝑂𝑈𝑇(𝑑2)
) =  𝛽0 + 𝛽1 ∗ ln(𝑑2) + 𝛽2 + 𝛽3 ∗ ln(𝑑2) 

Then: 

ln (
𝑝𝑇𝑂𝑈𝑇(𝑑2)

1 − 𝑝𝑇𝑂𝑈𝑇(𝑑2)) −  ln (
𝑝𝑇𝑂𝑈𝑇(𝑑1)

1 − 𝑝𝑇𝑂𝑈𝑇(𝑑1)) = ln�
𝑝𝑇𝑂𝑈𝑇(𝑑2) 1− 𝑝𝑇𝑂𝑈𝑇(𝑑2)⁄
𝑝𝑇𝑂𝑈𝑇(𝑑1) 1 − 𝑝𝑇𝑂𝑈𝑇(𝑑1)⁄ � 

= 𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) 
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= (𝛽1 + 𝛽3) ∗ ln(
𝑑2
𝑑1

) 

 Because 𝑑2
𝑑1

 = 2, 𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) reduces to: 

𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) =
𝑝𝑇𝑂𝑈𝑇(𝑑2) 1− 𝑝𝑇𝑂𝑈𝑇(𝑑2)⁄
𝑝𝑇𝑂𝑈𝑇(𝑑1) 1 − 𝑝𝑇𝑂𝑈𝑇(𝑑1)⁄ = 𝑒(𝛽1+𝛽3)∗ln(2) = 2(𝛽1+𝛽3) 

 Similarly, for immigration under model v for objective 1:  

𝜔�𝑀𝑆𝐼𝑁(𝑑1,𝑑2) =  2𝛽1  

Under models iii and iv,  

𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) = 𝜔�𝑀𝑆𝐼𝑁(𝑑1,𝑑2) = 𝜔�𝐵𝑂𝑇𝐻(𝑑1,𝑑2) =  2𝛽1 for objective 1, 

and 𝜔�𝑀𝑆𝑈𝑃(𝑑1,𝑑2) = 𝜔�𝑀𝑆𝐷𝑁(𝑑1,𝑑2) = 𝜔�𝐵𝑂𝑇𝐻(𝑑1,𝑑2) =  2𝛽1 for objective 2.  

Similarly, under models i and ii, 𝜔�𝐵𝑂𝑇𝐻(𝑑1,𝑑2) = 1. 

The odds ratios of detection for a doubling of distance, 𝜔�𝑘(𝑑1,𝑑2) are biased due 

to the unknown detection efficiency and the true odds ratio of movement for a doubling 

of distance is closer to zero and further from one than 𝜔�𝑘(𝑑1,𝑑2). Thus, 𝜔�𝑘(𝑑1,𝑑2) is a 

qualitative measure of the effect of distance on the likelihood of movement. If 𝜔�𝑘(𝑑1,𝑑2) 

has values close to, but less than one for any direction at any detection site then this 

indicates the likelihood of detection decreases only slightly with increasing distance. 

Values of 𝜔�𝑘(𝑑1,𝑑2) closer to zero indicate that the likelihood of detection decreases 

sharply with increasing distance. If I assume that the detection efficiency is 

approximately equal among detection sites, and if 95% confidence intervals of estimates 

of 𝜔�𝑘(𝑑1,𝑑2) for either direction or the common estimate for both directions at one 

detection site does not overlap with the 95% confidence interval of 𝜔�𝑘(𝑑1,𝑑2) for either 

or both directions at another detection site, then I take this as evidence of a difference in 

effect of distance on the likelihood of detection between those two detection sites. 
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Odds ratio between directions 

I calculated the odds ratio between directions for a given distance 𝑑 as 

𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑)  = 𝑝𝑇𝑂𝑈𝑇(𝑑) 1−𝑝𝑇𝑂𝑈𝑇(𝑑)⁄
𝑝𝑀𝑆𝐼𝑁(𝑑) 1−𝑝𝑀𝑆𝐼𝑁(𝑑)⁄  under objective 1, and  

𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑) =  𝑝𝑀𝑆𝑈𝑃(𝑑) 1−𝑝𝑀𝑆𝑈𝑃(𝑑)⁄
𝑝𝑀𝑆𝐷𝑁(𝑑) 1−𝑝𝑀𝑆𝐷𝑁(𝑑)⁄  under objective 2.  

For model v, it can be shown that this is equal to 𝑒(𝛽2+𝛽3∗ln (𝑑)). For models ii and 

iv this ratio, is: 𝑒(𝛽2 ). For models i and iii, the ratio is identically equal to one for all 

distances. For each detection site and each objective, I am interested in the distances 

from the detection site where this ratio is greater than or less than one. Because I am 

only interested in qualitative differences, i.e., whether the odds ratio between directions 

is different from one, the bias due to detection efficiency does not affect the 

interpretation of this measure. 

Criteria for the relative likelihood of immigration and emigration 

For objective 1, the hypothesis that immigration into a tributary is just as likely 

or more likely than emigration out of tributary was rejected at a tributary if two 

conditions were satisfied: first, model ii, iv, or v was selected by qAIC (AIC), and second, 

the relative likelihood of emigration and immigration, 𝑂𝑅𝑂𝑈𝑇:𝐼𝑁(𝑑), was greater than one 

over all distances used in the model. If 𝑂𝑅𝑂𝑈𝑇:𝐼𝑁(d) was less than or equal to one for any 

distance at a detection site, then I cannot conclude that emigration is more likely than 

immigration at that detection site. 

Criteria for the relative likelihood of immigration into tributaries from the upstream 
and downstream mainstem 

For objective 2, I explored the spatial pattern of relative likelihood of 

immigration into the tributary from the two source directions of the mainstem at each 
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detection site and sought to identify differences in this pattern among tributaries in the 

stream network. I use two criteria for evaluating the source direction of immigration into 

each tributary.  First, I identify detection sites where model iv or v was selected by qAIC 

(or AIC). Second, for the subset of detection sites, I identified the distances between the 

tagging locations and the detection site where the 𝑂𝑅𝑈𝑃:𝐷𝑁(𝑑) was greater or less than 

one.  To compare among detection sites, I evaluated whether MSUP was more likely than 

MSDN or vice versa over approximately the same set of distances at each detection site.
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RESULTS 

Evaluating dates of the fall transition period 

Times-series plots of daily detection rates (number of unique fish detections per 

day at any detection site/number of fish tagged in the basin) against maximum daily 

discharge (Figure 3(a-d)) show that the hydrographically defined start of the fall 

transition period for each year generally coincides with an increase in detections of 

tagged fish. In each year, the daily detection rate of PIT-tagged juvenile coho salmon 

increases with the first sizable increases of maximum daily discharge shortly after the 

start of the fall transition and is generally lower after the end of the fall transition. This 

finding is similar to temporal patterns in other Pacific coastal basins (Skeesick 1970, 

Scarlett and Cederholm 1983, Bramblett et al. 2002) and supports defining the fall 

transition from the hydrograph.
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Figure 3: Time series daily rate of detection of PIT tagged juvenile coho salmon and 
maximum daily stream discharge for (a) 2002, (b) 2003, (c) 2004, (d) 2005. Total daily 
rate of detection (number of unique fish captured per day at any detection site/number 
of total fish tagged in basin) on the y-axis of the top panel. Maximum daily discharge 
(m3·s-1) on the y-axis of the bottom panel. Dashed vertical bars indicate beginning and 
end of fall transition as defined by the hydrograph. 
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Juvenile coho detected during fall transition 

Tagged fish arrived at tributary detection sites from tagging locations over a 

wide range of distances (Figures 4a-e and 5a-d). For most detection sites, tagging 

locations near the detection site had a greater proportion of fish detected than tagging 

locations further away. Consistent with reports from other basins (Scarlett and 

Cederholm 1983) some juvenile coho salmon in the WFSR moved long distances to enter 

tributary streams during the fall.  At least one fish originating at a distant (> 8.5 km) 

tagging location was detected at each detection site (Table 4). The farthest distances 

between the location a fish was tagged and the site where it was detected was 11.5 km 

from the upstream (MSDN) mainstem for Moore Creek and 11.6 km from the 

downstream (MSUP) mainstem for Gold Creek. 

Relatively few fish were detected emigrating (TOUT) from Crane Creek and 

Moore Creek, but fewer fish were tagged at fewer tagging locations in these tributaries 

than elsewhere (Table 4). For Crane Creek, only 3 fish were detected immigrating from 

the downstream (MSUP) mainstem (Table 4).  
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Figure 4: Empirical proportion of fish detected from each tagging location by direction as 
a function of distance between the tagging location and each detection site in (a) Upper 
Mainstem, (b) Gold, (c) Beaver, (d) Moore, and (e) Crane Creeks. Directions are TOUT, 
representing emigration from a tributary, and MSIN, representing immigration to a 
tributary.  Data are as previously described for statistical models of tributary 
immigration and emigration. The x-axis is distance from the detection site on the log-
scale. Note: Because of the unknown detection efficiency, the proportion of fish detected 
at any given distance and direction is a biased estimate of the actual proportion of fish 
that moved.  
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Figure 5: Empirical proportion of fish detected from each tagging location by direction as 
a function of distance between the tagging location and each detection site in (a) Gold, 
(b) Beaver, (c) Moore, and (d) Crane Creeks. Directions are MSUP, representing 
immigration from the mainstem downstream of the tributary, and MSDN, representing 
immigration from the mainstem upstream of the tributary.  Data are as previously 
described for statistical models of tributary immigration and emigration. The x-axis is 
distance from the detection site on the logscale. Note: Because of the unknown detection 
efficiency, the proportion of fish detected at any given distance and direction is a biased 
estimate of the actual proportion of fish that moved. 
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Table 4: Summary of data sets used in logistic regression modeling to examine the relationship between the relative likelihood of 
detection and the distance and direction of summer tagging locations for study tributaries in the West Fork Smith River, OR. Data 
sets were constructed as previously describe for statistical models, and include only the fish tagged before the start of the fall 
transition and in locations where at least 20 fish were tagged. TOUT indicates tagging locations in the tributary upstream of the 
antenna, and is synonymous with emigration. MSIN indicates locations outside of the tributary, and is synonymous with 
immigration. MSUP indicates tagging locations downstream of the confluence and is synonymous with mostly upstream 
movement in the mainstem. MSDN indicates locations upstream of the confluence and is synonymous with mostly downstream 
movement in the mainstem. Distance to furthest detection reflected the most distant tagging location from which at least one fish 
was detected. MSIN distance was constrained by the furthest TOUT. All tabled counts are out of a total of 326 tagging locations and 
17 471 tagged fish. 

Detection 
Site 

# Tagging 
Locations  

Total # 
Fish 

Tagged  

Total # 
Fish 

Detected  

Distance to 
nearest and 

furthest 
tagging 

location (m)  

Distance 
of furthest 

detection 
(m) 

# Tagging 
Locations  

Total # 
Fish 

Tagged  

Total # 
Fish 

Detected  

Distance to 
nearest and 

furthest 
tagging 

location (m)  

Distance 
of furthest 

detection 
(m)  

Objective 1: TOUT     MSIN     
Upper 
Mainstem 

30 1401 224 [157, 4851] 4851 83 4660 31 [46, 4820] N/A 

Gold 47 2001 296 [52, 4964] 4964 140 7892 108  [74, 4611] N/A 
Beaver 42 1619 105 [52, 4477] 4477 135 7755 235 [58, 4447] N/A 
Moore 15 614 22 [49, 1931] 1231 30 2139 93 [163, 1946] N/A 
Crane 8 285 5 [150, 1975] 1825 22 1443 40 [53, 1894] N/A 
Objective 2: MSUP     MSDN     
Gold 198 11 014 56 [74, 11 626] 11626 60 3415 56 [74, 8563] 1429 
Beaver 86 5506 144 [60, 8861] 8861 135 7313 102 [58, 7916] 4346 
Moore 67 3749 34 [225, 7452] 2324 145 7714 87 [225, 11 544] 11 544 
Crane 10 631 3 [203, 1894] 303 73 4421 42 [53, 10 015] 10 015 
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Model selection 

Data were overdispersed for all models, except for Crane Creek in objective 2 

(Table 5 and 6). Overdispersion parameters for the models with the most support 

ranged from 1.46 to 2.5 for objective 1 and from 1 to 1.68 for objective 2. The null model 

(model i) was not in the set of candidate models for any detection site. Consequently, at 

all detection sites for each objective I rejected the hypothesis that the odds of detection 

is unrelated to distance or direction.  

For both objectives, residuals for Upper Mainstem, Gold, Beaver, and Moore 

Creeks yielded no evidence for lack of fit. Residuals of models for both objectives for 

Crane Creek revealed a single high leverage point that when removed altered the 

parameter estimates, but not the model chosen. Because the point appeared legitimate 

and not the result of an error, it was retained in the models. 

For objective 1, the selected logistic regression model for the Upper Mainstem 

and Gold Creek included an interaction between distance and direction (model v) 

(Tables 5 and 7). The selected logistic regression models for Beaver, Moore, and Crane 

Creeks (model iii) contained only distance, although models that included direction but 

no interaction with distance were within 2 ∆qAIC of the selected model (Tables 5 and 7). 

For objective 2, the full model (model v) had the lowest value of qAIC at all four 

detection sites, but competing models (2 < ∆qAIC) with fewer parameters were selected 

at Gold, Beaver, and Crane Creeks (Tables 6 and 8). The selected logistic regression 

model for Gold Creek included a term for distance only (model iii) and for Beaver and 

Crane Creeks included both distance and direction, but no interaction (model iv). 
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Table 5: Results of model selection for logistic regression to examine relative likelihood 
of immigration to and emigration from tributaries in the West Fork Smith River, OR. 
Models were ranked based on values of qAIC using a common value of the 
overdispersion parameter from the full model (model v). Plausible models were within 
0-2 qAIC units. Models in bold face were chosen as best supported by the data. Distance 
in all models is the logarithm of distance.  

Detection 
Site Model x-variables 

Residual 
Df Dispersion ∆qAIC 

Upper  i NULL 112 12.68 368.2 
Mainstem ii Direction 111 7.77 97.3 
 iii Distance 111 6.27 155.6 
 iv Distance + Direction 110 1.92 8.9 
 v Distance + Direction + 

Distance:Direction 
109 1.87 0 

Gold i NULL 186 7.80 594.9 
 ii Direction 185 4.97 363.9 
 iii Distance 185 6.65 214.4 
 iv Distance + Direction 184 1.99 84.0 
 v Distance + Direction + 

Distance:Direction 
183 1.46 0 

Beaver i NULL 176 5.41 283.8 
 ii Direction 175 5.03 260.9 
 iii Distance 175 1.58 0 
 iv Distance + Direction 174 1.57 1.4 
 v Distance + Direction + 

Distance:Direction 
173 1.58 2.6 

Moore i NULL 44 4.15 21.0 
 ii Direction 43 4.29 22.7 
 iii Distance 43 2.53 0 
 iv Distance + Direction 42 2.50 1.7 
 v Distance + Direction + 

Distance:Direction 
41 2.56 3.4 

Crane i NULL 29 2.84 14.5 
 ii Direction 28 3.08 15.9 
 iii Distance 28 1.57 0 
 iv Distance + Direction 27 1.71 1.7 
 v Distance + Direction + 

Distance:Direction 
26 1.62 3.1 
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Table 6: Results of model selection for logistic regression to examine the relative 
likelihood of immigration into tributaries from the downstream and upstream mainstem 
of the West Fork Smith River, OR. Models were ranked based on values of qAIC using a 
common value of the overdispersion parameter from the full model (model v). For Crane 
Creek, the common overdispersion parameter was estimated to be 1.0 and models were 
compared with AIC statistics. Plausible models were within 0-2 qAIC (AIC) units. Models 
in bold face were chosen as best supported by the data. Distance in all models is the 
logarithm of distance. 

Detection 

Site Model x-variables 
Residual 
Df Dispersion ∆qAIC 

Gold i NULL 257 5.65 292.4 
 ii Direction 256 4.02 266.1 
 iii Distance 256 1.71 1.5 
 iv Distance + Direction 255 1.77 3.3 
 v Distance + Direction + 

Distance:Direction 
254 1.3 0 

Beaver i NULL 220 5.64 263.8 
 ii Direction 219 4.66 252.6 
 iii Distance 219 2.19 18.8 
 iv Distance + Direction 218 1.71 1.8 
 v Distance + Direction + 

Distance:Direction 
217 1.85 0 

Moore i NULL 211 2.36 90.1 
 ii Direction 210 2.44 89.0 
 iii Distance 209 1.90 31.0 
 iv Distance + Direction 209 1.60 16.0 
 v Distance + Direction + 

Distance:Direction 
208 1.38 0 

Crane i NULL 82 3.26 107.0 
 ii Direction 81 3.13 107.4 
 iii Distance 81 1 14.4 
 iv Distance + Direction 80 1 0.9 
 v Distance + Direction + 

Distance:Direction 
79 1 0 
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Table 7: Results of parameter estimates for best supported logistic regression models to 
examine relative likelihood of immigration to (MSIN) and emigration from (TOUT) 
tributaries in the West Fork Smith River, OR. 𝛽0 is the intercept parameter for the MSIN 
direction. 𝛽1 is the slope parameter that describes the relationship between the logit of 
detection and the logarithm of distance for the MSIN direction. 𝛽2 is the parameter for 
the difference in intercept between the TOUT and MSIN directions; when not included, 
the two directions have the same intercept. 𝛽3, is the parameter for the difference in 
slope between the TOUT and MSIN directions; when not included, the two directions 
have the same slope. 

Detection Site 𝜷𝟎 [95% 
CI] 

𝜷𝟏 [95% CI] 𝜷𝟐 [95% CI] 𝜷𝟑 [95% CI] 

Upper 
Mainstem 

3.62 
[1.75, 5.48] 

-1.226 
[-1.54, -0.91] 

-1.11 
 [-3.39, 1.18] 

0.605 
[0.23, 0.98] 

Gold 5.17 
[-3.74, 6.60] 

-1.582 
[-1.85, -1.31] 

-5.00 
[-6.64, -3.37] 

1.275 
[0.97, 1.58] 

Beaver 2.84 
[2.12, 3.55] 

-1.002 
[-1.12, -0.87] 

N/A N/A 

Moore 2.27 
[0.05, 4.50] 

-0.916 
[-1.31, -0.53] 

N/A N/A 

Crane 0.80 
[-1.28, 2.88] 

-0.756 
[-1.13, -0.38] 

N/A N/A 

 

Table 8: Results of parameter estimates for best supported logistic regression models to 
examine relative likelihood of immigration into tributaries from the downstream (MSUP) 
and upstream (MSDN) mainstem West Fork Smith River, OR. 𝛽0 is the intercept 
parameter for the MSDN direction. 𝛽1 is the slope parameter that describes the 
relationship between the logit of detection and logarithm of distance for the MSDN 
direction. 𝛽2 is the parameter for the difference in intercept between the MSUP and 
MSDN directions; when not included, the two directions have the same intercept. 𝛽3, is 
the parameter for the difference in slope between the MSUP and MSDN directions; when 
not included, the two directions have the same slope. 

Detection Site 𝜷𝟎 [95% CI] 𝜷𝟏 [95% CI] 𝜷𝟐 [95% CI] 𝜷𝟑 [95% CI] 
Gold 4.52 

[3.16, 5.88] 
-1.452 
[-1.70, -1.20] 

N/A N/A 

Beaver 2.25 
[1.40, 3.10] 

-0.974 
[-1.11, -0.84] 

0.80 
[0.45, 1.15] 

N/A 

Moore 0.37 
[-1.05, 1.79] 

-0.582 
[-0.76, -0.40] 

5.60 
[2.18, 9.03] 

-1.014 
[-1.57, -0.46] 

Crane -1.83 
[-3.02, -0.64] 

-0.908 
[-1.08, -0.74] 

1.88 
[0.83, 2.95] 

N/A 
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Objective 1: The relative likelihood of immigration and emigration 

The relative likelihood of emigration and immigration differed for two of the five 

detection sites. For the Upper Mainstem and Gold Creek detection sites, the odds ratio of 

detection between emigration and immigration for a given distance, 𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑) was 

greater than 1 for all modeled distances (Table 9, Figure 6:a,b) as based on model v. In 

contrast, 𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑) was equal to 1 for all distances at Crane, Moore, and Beaver 

detection sites as based on model iii (Table 9, Figure 6:c-e).  In other words, fish that 

arrived at the Upper Mainstem and Gold Creek detection sites from any distance were 

more likely to be emigrating than immigrating. In particular, fish that arrived at the 

Upper Mainstem and Gold Creek detection sites from long distances (greater than 

approximately 1 km) were many more times likely to have come from the tributary than 

the mainstem. Fish tagged at equivalent distances away from the Beaver, Moore and 

Crane detection sites either in the tributary or in the mainstem were just as likely to be 

detected.  

The odds ratio of detection for a doubling of distance, 𝜔�𝑘(𝑑1,𝑑2), was less than 1 

for both directions at all detection sites (Table 10). Thus, as distance from the detection 

site increased, fish were less likely to arrive at any detection site from any direction. 

There were differences between directions at the Upper Mainstem and Gold Creek 

detection sites in the odds ratio of detection for a doubling of distance. The direction-

specific estimates of the odds ratio of detection for a doubling of distance in each 

direction at the Gold and Upper Mainstem sites were much higher for 𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) than 

for 𝜔�𝑀𝑆𝐼𝑁(𝑑1,𝑑2) under model v (Table 10). For Beaver, Moore, and Crane Creeks (Table 

10), model iii yielded a common odds ratio of detection for a doubling of distance for 

both directions.  Estimates of 𝜔�(𝑑1,𝑑2) shared a set of plausible values at Beaver, Moore, 
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and Crane Creeks, suggesting that there was no discernible difference among these 

detections sites in the effect of distance on the odds of movement. Additionally, 

estimates of 𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) and  𝜔�𝑀𝑆𝐼𝑁(𝑑1,𝑑2) at Gold Creek were significantly different 

from estimates of 𝜔�(𝑑1,𝑑2) at Beaver, Moore, and Crane Creeks. Under the assumption 

that detection efficiency is approximately equal among the detection sites, this indicates 

that fish that emigrated from Gold Creek were more likely to do so over long distances 

than fish that emigrated from Beaver, Moore, and Crane Creeks. Similarly, fish that 

immigrated into Gold Creek were less likely to do so over long distance than fish that 

immigrated into Beaver, Moore, and Crane Creeks.  
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Table 9: Estimates of the relative likelihood of immigration to and emigration from 
tributaries of the West Fork Smith River, OR. Relative likelihood is calculated as 
𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑), the odds of emigration from the tributary (TOUT) divided by the odds of 
immigration into the tributary (MSIN) for any fixed distance 𝑑. For models that do not 
include a difference between directions, the odds ratio is equal to one for all distances. 
Odds ratios for Upper Mainstem and Gold Creek are a function of logarithm of distance in 
meters, log (𝑑). The width of the 95% confidence interval changes with distance for 
Upper Mainstem and Gold Creek (see Figure 6).   

Upper Mainstem  Gold Beaver Moore Crane 
 𝑒(−1.105+0.605 log(𝑑) )  𝑒(−5.0+1.275 log(𝑑) ) 1 1 1 
 
Table 10: Estimates of the effect of doubling the distance from the detection site to 
tagging location on the likelihood of movement to the detection site for immigration and 
emigration from tributaries in the West Fork Smith River, OR. 𝜔�𝑘(𝑑1,𝑑2)is the odds ratio 
of detection of juvenile coho salmon for each doubling of the distance from summer 
tagging locations in the direction indicated by 𝑘. For logistic regression models that 
included a difference between directions, 𝑘 is either emigration from the tributary 
(TOUT) or immigration into the tributary (MSIN). For logistic regression models that did 
not include a difference between directions, 𝑘 is the same for both directions. 

 Upper 
Mainstem  
[95% CI] 

Gold  
[95% CI] 

Beaver 
 [95% CI] 

Moore 
[95% CI] 

Crane 
[95% CI] 

𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) 0.65  
[0.57, 0.75] 

0.81 
[0.74,0.88] 

0.50 
[0.46,0.55] 

0.53 
[0.40,0.69] 

0.59 
[0.46,0.77] 

𝜔�𝑀𝑆𝐼𝑁(𝑑1,𝑑2) 0.42  
[0.34,0.53] 

0.33 
[0.28,0.40] 
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Figure 6: Relative likelihood of immigration and emigration as a function of distance for 
(a) Upper Mainstem, (b) Gold, (c) Beaver, (d) Moore, and (e) Crane Creeks. The relative 
likelihood is expressed as the odds ratio, 𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑), the odds of emigration from the 
tributary (TOUT) divided by the odds of immigration into the tributary (MSIN) for any 
fixed distance 𝑑 from each detection site.  For distances where 𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑) is above 1 
(grey line) emigration is more likely than immigration, where 𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑) is below one, 
immigration is more likely than emigration. Thin dashed lines indicate the upper and 
lower limits of the 95% confidence interval of 𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁(𝑑). Y-axis is on the log10-scale so 
that values above and below 1 are equivalently spaced. 
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Objective 2: The relative likelihood of immigration into tributaries from the 
downstream and upstream mainstem 

Tributaries varied in the spatial pattern of the more likely source direction of 

immigration from the mainstem. For the Gold Creek detection site, the odds ratio of 

detection between the upstream and downstream mainstem, 𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑)  was equal to 1 

for all modeled distances, based on model iii (Table 11, Figure 7a). For the Beaver Creek 

detection site, 𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑) was greater than 1 for all modeled distances, based on model 

iv (Table 11, Figure 7a). Thus, juvenile coho salmon entering Beaver Creek were more 

likely to originate from the mainstem downstream of the confluence (MSUP) over all 

distances.  

Model v was chosen at the Moore Creek detection site, and the 95% confidence 

interval of 𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑)  included one for distances of less than approximately 500 m, 

suggesting that movement from the MSUP direction was as likely as from the MSDN 

direction within 500 m of the detection site (Table 11, Figure 7c). However, at longer 

distances fish were more likely to originate from the mainstem upstream of the 

confluence (MSDN). At Moore Creek, the higher relative likelihood of detection for fish 

tagged in the mainstem upstream of the confluence may have been influenced by a large 

number of detections from several tagging locations at distances of 7.5-9 km. Long-

distance movements were occasionally observed at other detections sites, but for these 

sites most tagging locations at long distances were recorded as having no detections. 

Only at Moore Creek was immigration over long distances from the mainstem upstream 

of the confluence somewhat common.  

At the Crane Creek detection site, 𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑) was less than one for all modeled 

distances, based on model iv (Table 11, Figure 7d). This suggests that juvenile coho 
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salmon moving into Crane Creek were more likely to originate from the mainstem 

upstream (MSDN) of the confluence over all distances. At Crane Creek, very few fish 

were detected in the mainstem downstream of the confluence. This indicates that, given 

the data, immigration from the mainstem downstream of Crane Creek is relatively rare. 

There were differences among directions and among detection sites in the odds 

ratio of detection for a doubling of distance for a direction. The estimate of 

 𝜔�𝑀𝑆𝑈𝑃(𝑑1,𝑑2) was higher than the estimate of  𝜔�𝑀𝑆𝐷𝑁(𝑑1,𝑑2) for Moore Creek (Table 

12). For Gold, Beaver, and Crane Creeks, models iii and iv each gave a common estimate 

of  𝜔�𝐵𝑂𝑇𝐻(𝑑1,𝑑2). For Gold, Beaver, and Crane Creeks, estimates of 𝜔�𝐵𝑂𝑇𝐻(𝑑1,𝑑2) agreed 

with values of 𝜔�𝑀𝑆𝐼𝑁(𝑑1,𝑑2)  from the first objective (Table 10 and 12). Estimates of 

𝜔�𝑀𝑆𝑈𝑃(𝑑1,𝑑2) at Moore Creek differed from estimates of 𝜔�𝐵𝑂𝑇𝐻(𝑑1,𝑑2) at Gold, Beaver, 

and Crane Creeks. Under the assumption that detection efficiency is equal among the 

detection sites, this indicates that fish that immigrated into Moore Creek from the 

upstream mainstem were more likely to do so over long distances than fish that 

immigrated from the upstream mainstem into Gold, Beaver, and Crane Creeks.  
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Table 11: Estimates of the relative likelihood of immigration from locations downstream 
of the confluence to immigration locations upstream of the confluence tributaries of the 
West Fork Smith River, OR. Relative likelihood is calculated as 𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑), the odds of 
immigration from the downstream mainstem (MSUP) divided by the odds of 
immigration from the upstream mainstem (MSDN) for any fixed distance 𝑑 from the 
detection site. For models that do not include a difference between directions, the odds 
ratio is equal to one for all distances. The odds ratio for Moore Creek is a function of the 
logarithm of distance in meters, log (𝑑). The width of the 95% confidence interval 
changes with distance for Moore Creek (see Figure 7).   

Gold Beaver 
[95% CI] 

Moore Crane 
[95% CI] 

1 2.23 
[1.57, 317] 

 𝑒(5.60−1.014 log(𝑑) ) 0.16 
[0.04, 0.53] 

 

Table 12: Estimates of the effect of doubling the distance from the detection site to 
tagging location on the likelihood of movement to the detection site for immigration 
from the downstream and upstream mainstem in the West Fork Smith River, OR. 
𝜔�𝑘(𝑑1,𝑑2)is the odds ratio of detection of juvenile coho salmon for each doubling of the 
distance summer tagging locations in the direction indicated by 𝑘. For the logistic 
regression model that included a difference between directions, 𝑘 is either for 
immigration from the downstream mainstem (MSUP) or immigration for the upstream 
mainstem (MDSN). For logistic regression models that did not include a difference 
between directions, 𝑘 is the same for both directions. 

 Gold 
[95% CI] 

Beaver 
[95% CI] 

Moore 
[95% CI] 

Crane 
[95% CI] 

𝜔�𝑀𝑆𝑈𝑃(𝑑1,𝑑2) N/A N/A 
 

0.33  
[0.23,0.47] 

N/A 

𝜔�𝑀𝑆𝐷𝑁(𝑑1,𝑑2) N/A N/A 0.67  
[0.60, 0.76] 

N/A 

𝜔�𝐵𝑂𝑇𝐻(𝑑1,𝑑2) 0.37  
[0.31,0.44] 

0.52  
[0.48,0.57] 

N/A 0.53 
[0.47, 0.60] 
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Figure 7: Relative likelihood of immigration from the downstream and upstream 
mainstem as a function of distance: (a) Gold, (b) Beaver, (c) Moore, and (d) Crane Creeks. 
The relative likelihood is expressed as the odds ratio, 𝑂𝑅�𝑈𝑃:𝐷𝑁(d), the odds of upstream 
immigration from locations downstream of the tributary (MSUP) divided by the odds 
downstream immigration from locations in mainstem upstream of the  tributary (MSDN) 
for any fixed distance 𝐷 for each detection site. For distances where 𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑) is above 
1 (grey line) immigration from the downstream mainstem is more likely; where 
𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑) is below 1, immigration from the upstream mainstem is more likely. Thin 
dashed lines indicate the upper and lower limits of the 95% confidence interval of 
𝑂𝑅�𝑈𝑃:𝐷𝑁(𝑑). Y-axis is on the log10-scale so that values above and below 1 are 
equivalently spaced. 



58 
 

 

 

DISCUSSION 

As seasons progress, the distribution of juvenile coho salmon in stream networks 

can change both by habitat type (Nickelson et al. 1992) and by position along the 

longitudinal stream profile (Reeves et al. 2011); here, I demonstrate substantive 

variability among tributaries in the basin-scale pattern of fall movement that may 

produce such changes in fish distribution. This study is the first to investigate the source 

of juvenile coho salmon moving into or out of tributaries during the fall, and to evaluate 

the likelihood of detecting juvenile coho salmon moving during the fall as a function of 

the distance and direction of originating locations. Fall movements by juvenile coho 

salmon indicate where winter habitats in tributaries are functionally connected (sensu 

“actual connectivity” Calabrese and Fagan 2004) to summer habitats elsewhere in the 

WFSR. Although this is a case study of a specific river basin, observed variation in fall 

movement among tributaries can be interpreted relative to differences in the network 

location of confluences and in other tributary characteristics (e.g., geomorphic 

characteristics, stream flow, or water temperature).  

Basin-scale variation in emigration and immigration  

Consistent with the available literature, I hypothesized that juvenile coho salmon 

would be more likely to immigrate into tributaries during the fall; however, I found that 

at some WFSR tributaries juvenile coho salmon were much more likely to emigrate. Prior 

reports on the fall movement of juvenile coho salmon emphasized net immigration into 

tributaries from the mainstem based on differences in the number of fish immigrating 

and emigrating (Skeesick 1970, Cederholm and Scarlett 1983, Bramblett et al. 2002). 

However, the total number of fish that move depends on both the probability of 
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movement and the number of fish available to move. For this reason, more fish may 

immigrate than emigrate even if immigration is no more likely than emigration. Thus, my 

results for Beaver, Moore, and Crane Creeks are compatible with prior observations, but 

at Gold Creek and the Upper Mainstem, it is unlikely that more fish immigrated than 

emigrated. Although I cannot determine the total number of immigrants or emigrants 

using the method, the likelihood of detection enables comparisons among tributaries 

that reveal spatial variability in the pattern of emigration and immigration. Thus, this 

study complements and expands upon earlier research on the fall movement of juvenile 

coho salmon. 

Given the availability of data from PIT-tagging detections at multiple tributaries, I 

was able to detect fall movement patterns within a larger stream network, which, prior 

to these technological advancements, was not feasible in studies that investigated only 

one or two tributaries (e.g. Skeesick 1970, Tschaplinksi and Hartman 1983, Bramblett et 

al. 2002). The five tributaries of the WFSR displayed two general patterns in the relative 

likelihood of emigration and immigration. Juvenile coho salmon were equally as likely to 

emigrate out of as immigrate into the three mid- to lower-river tributaries (Beaver, 

Moore and Crane Creek), whereas, juvenile coho salmon were more likely to emigrate 

out of the two upper-river tributaries (Gold Creek and Upper Mainstem). This basin-

scale variability in the pattern of emigration and immigration at tributaries of the WFSR 

underscores the importance of a riverscape approach in the study of stream fish 

movement (Schlosser 1991, Fausch et al. 2002, Benda et al. 2004).  

Observed differences in the likelihood of emigration and immigration by juvenile 

coho salmon may have arisen from differences among WFSR tributaries in network 

position and physical habitat characteristics. Differences between detection sites in the 
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general pattern of emigration and immigration were most striking between Beaver 

Creek and Gold Creek (Table 9 and 10; Figure 6). A direct comparison of these tributaries 

suggests network position may influence the two general patterns of emigration and 

immigration. I expect that network position is more likely to affect the likelihood of 

immigration than of emigration. This may result if fish in the mainstem are able to detect 

and respond to differences (e.g., temperature, turbidity, or water velocity) between a 

tributary and the mainstem that fish in the tributary cannot. Earlier investigations 

generally concluded that juvenile coho salmon move into tributaries to avoid the hazard 

of highwinter flows in the mainstem (Skeesick 1970, Tschaplinksi and Hartman 1983, 

Scarlett and Cederholm 1983). The mainstem of the WFSR lacks flow refuges due to past 

land use (Ebersole et al. 2006, Miller 2010), which may influence juvenile coho salmon to 

seek refuge in tributaries. Although the Beaver and Gold Creek confluences are separated 

by less than 1 km along the mainstem WFSR, the ratio of tributary to mainstem drainage 

area in Beaver Creek is half that in Gold Creek (Table 1). Consequently, discharge and 

velocities in the tributary and mainstem, though unmeasured in the field, were likely 

more similar during the fall transition for fish immigrating from the mainstem into Gold 

Creek than into Beaver Creek. The lower likelihood of immigration into Gold Creek may 

be partially explained if flow characteristics between the mainstem and the tributary 

contrast insufficiently to instigate immigration.  

Differences among WFSR tributaries in one or more physical characteristics 

related to winter habitat suitability may have contributed to differences in the likelihood 

of juvenile coho salmon emigration. The preferred overwinter habitats of juvenile coho 

salmon include deep pools with large wood, and low water velocity habitats such as 

backwater pools and side channels (McMahon and Hartman 1989, Nickelson et al. 1992). 
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Considering available data for the WFSR, tributaries differed little in the amount of large 

wood, which is low (0.02 to 0.50 pieces·m-1) throughout the basin due to past land use 

(Ebersole et al. 2006, Ebersole et al. 2009a,b). However, WFSR tributaries do differ in at 

least one widely used measure of habitat capacity for coho salmon—intrinsic potential 

(Burnett et al. 2007). The length-weighted average of intrinsic potential in Gold Creek, 

where emigration was more likely, is lower than in Beaver Creek (Table 1) and below the 

threshold considered “high” (0.75) by other investigators (Burnett et al. 2007, Busch et 

al. 2012). Similarly, the intrinsic potential for coho salmon is in the high range for Moore 

and Crane Creeks, but below this for the Upper Mainstem. Though this study was unable 

to definitively link the relative likelihood of emigration and immigration to network 

position or other physical characteristics, results do suggest the value of future research 

into fall movement that systematically identifies and parses the causes of differences in 

the pattern of fall movement among tributaries throughout a stream network. 

The effect of distance on the likelihood of emigration and immigration 

contributed to the general pattern of differences in the relative likelihood of emigration 

and immigration among tributaries of the WFSR. The large difference between directions 

in the odds ratio for a doubling of distance (𝜔�𝑇𝑂𝑈𝑇(𝑑1,𝑑2) and 𝜔�𝑀𝑆𝐼𝑁(𝑑1,𝑑2)) at Gold 

Creek (Table 10) suggests that emigrating fish were almost as likely to be detected from 

distant as nearby locations, whereas immigrating fish were much less likely to be 

detected from long distances. Fish were more likely to emigrate from long distances and 

less likely to immigrate from long distances at Gold Creek than at Beaver, Moore, and 

Crane Creeks (Table 10). In other words downstream emigration seemed “easier” and 

immigration “harder” for juvenile coho salmon at Gold Creek as compared to the other 

tributaries.  
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There may be multiple reasons for the differences among tributaries in the odds 

ratio of detection for a doubling of distance. For example, if overwintering habitat in a 

tributary is limited, then fish may easily move long distances downstream with the 

current to emigrate. If overwintering habitat outside the tributary is adequate, then fish 

may have little incentive to move and will be unlikely to immigrate from long distances. 

Alternatively, if overwintering habitat outside the tributary is scarce, then fish may be 

unlikely to immigrate upstream into a tributary from a long distance either because 

upstream movement in the mainstem against the current is more difficult due to local 

water velocity, or because fish moving downstream encounter insufficient contrast at a 

tributary confluence to instigate immigration. Because I know the odds ratio of detection 

to be less extreme (closer to 1) than the odds ratio of movement and because I lack 

information on the movement dynamics within the mainstem, it is not possible to 

determine the cause of these differences among tributaries in the odds ratio of detection 

for a doubling of distance. However, the difference in this odds ratio between Gold Creek 

and Beaver Creek is striking, and indicates the value of accounting for imperfect 

detection to obtain unbiased estimates when explaining why the effect of distance on the 

likelihood of immigration and emigration might vary among tributaries. Additionally, 

information on the movement patterns in the mainstem immediately upstream and 

downstream of tributary confluences may help explain the differences among tributaries 

in the likelihood of immigration. 

Basin-scale variation in the source of immigration  

Lacking an existing body of research that documented the source of immigrants 

during fall, I hypothesized that the direction of juvenile coho salmon immigrating from 
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the mainstem would vary among tributaries, and found evidence supporting this in the 

WFSR. This exploration was motivated in part by theoretical work emphasizing that 

flow-connectivity imposes structure on biological processes of a stream network (Fagan 

2001, ver Hoef et al. 2006, Peterson et al. 2007). My study is unique in distinguishing 

between movement into a tributary from locations in the mainstem downstream of the 

confluence and from locations in the mainstem upstream of the confluence.  Thus, I was 

able to identify that the source direction of immigrating juvenile coho salmon was an 

important explanatory variable for three of the four WFSR tributaries (Table 6).  

For these three WFSR tributaries, differences in the dominant source of 

immigrants at tributaries mirrored position of the confluence in the network. At Beaver 

Creek, in the mid-river, juvenile coho salmon were more likely to immigrate from the 

mainstem downstream of the confluence (Figure 7b), while at Moore Creek and the 

Crane Creek in the lower river, juvenile coho salmon were more likely to immigrate from 

the mainstem upstream of the confluence (Figure 7c and d). These results suggest two 

potential movement processes, one more active and the other more passive, as possible 

explanations. First, juvenile coho salmon may actively relocate to potential 

overwintering habitat during the fall transition based on information about the 

landscape available within their perceptual range (Lima and Zollner 1996, Olden et al. 

2004). Juvenile coho salmon rearing in the mainstem downstream of a confluence may 

be more able to sense the presence of a tributary than fish rearing in the mainstem 

upstream of a confluence. Consequently, fish may be more likely to enter a tributary 

from the mainstem downstream than from upstream of the confluence, which was found 

at Beaver Creek. However, the perceptual cues (e.g., olfactory, temperature, or velocity 



64 
 

 

 

gradients) to which these fish responded and the distance over which the cues could be 

perceived remain open questions.  

Immigration into a tributary may also occur because fish passively relocate after 

being displaced or are induced to move from rearing areas by increased local water 

velocity from the initial fall storm flows (Giannico and Healey 1998). Thus, fish can be 

expected to opportunistically seek the closest available overwintering habitat. If no 

suitable overwintering habitat is nearby, then fish may be more likely to passively move 

downstream than upstream against the current, given the lower energy required. The 

higher likelihoods of immigration from the upper river at Moore Creek and Crane Creek 

are compatible with this. If movement with the current is a dominant process, we should 

also expect the kind of long-distance movements from the upper river network observed 

by Peterson (1982) to be relatively common. I observed individual instances of long-

distance movement were from both directions (Table 4), but only for fish that moved 

into Moore Creek from the upper river were long-distance movements common (Figure 

5c and 7c). Active and passive relocation are not mutually exclusive, and this case study 

showed some evidence for one or the other in different parts of the network, revealing a 

potentially productive avenue of research for other stream networks. 

Fall movement and overwinter survival and growth 

The PIT-tagging and recapture data on juvenile coho salmon for this study were 

adapted from a case study of watershed-scale variation in apparent survival and growth 

(Ebersole et al. 2006, 2009a, 2009b; Wigington et al. 2009), thus my results provide an 

opportunity to suggest potential consequences of fall movement in this system with 

broad-scale spatial heterogeneity in seasonal habitat quality. Ebersole et al. (2009a) 
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demonstrated that apparent overwinter survival in the WFSR during the winters of 

2002-2006 was highest in perennial and intermittent tributaries and lowest in some 

sections of the mainstem. Although survival estimates were calculated based on 

tributary class rather than for individual tributaries, overwinter survival in Gold Creek 

and the Upper Mainstem were comparable to other tributaries (Ebersole et al. 2009a). 

These data and my finding for these tributaries that juvenile coho salmon were most 

likely to emigrate during the fall transition suggest that emigration may not increase 

mortality, and that fish emigrating from the upper-river tributaries may find suitable 

overwintering habitat elsewhere in the stream network. Mainstem habitat conditions 

varied, and overwinter survival was very low in the mainstem near Moore and Crane 

Creeks, but similar to tributary overwinter survival near Beaver and Gold Creeks 

(Ebersole et al. 2006). One potential explanation for this variation in overwinter survival 

in the mainstem is that juvenile coho salmon in mainstem habitat near Beaver and Gold 

Creeks exhibited both movement processes outlined above: fish moved upstream into 

Beaver Creek and downstream to Moore Creek. In contrast, fish in the mainstem near 

Moore and Crane Creeks were only likely to immigrate downstream into Crane Creek 

(Figures 5 and 7). This suggests that fall movement may potentially contribute to higher 

overwinter survival for coho salmon in the mid-river mainstem that have multiple 

opportunities to immigrate into tributaries. 

Fall movement may also increase growth opportunities for moving fish. Juvenile 

coho salmon in the mainstem were larger in the late summer than fish in the tributaries, 

whereas fish in the intermittent tributaries, Moore and Crane Creeks, were smaller in the 

late summer than fish in the mainstem and perennial tributaries (Ebersole et al. 2009b). 

Yet, juvenile coho salmon overwintering in Moore Creek had higher rates of growth than 
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fish overwintering elsewhere in the basin (Ebersole et al. 2009a). A substantial 

proportion of tagged fish that entered Moore Creek came from a long range of distances 

(7.5 km- 9 km), suggesting that maintaining movement routes between Moore Creek and 

upstream mainstem reaches is essential to enhance growth opportunities for a 

considerable subset of the coho salmon population in the WFSR. The connectivity 

between Moore Creek and the upper mainstem demonstrates the potential importance 

of intermittent streams to the survival and growth of threatened fish species (Wigington 

et al. 2009). Although the majority of fish used by Ebersole et al. (2006, 2009a) to assess 

overwinter survival and growth are represented in my results, the degree to which fall 

movement interacts with and influences overwinter survival and growth cannot be 

disentangled in these data, and thus would be an important topic for additional study. 

The collective evidence from the WFSR case study demonstrates spatial and 

temporal heterogeneity in population dynamics for juvenile coho salmon. This includes 

relative abundance (Ebersole et al. 2009b), seasonal growth (summer: Ebersole et al. 

2009b, winter: Ebersole et al. 2006, 2009a), apparent overwinter survival (Ebersole et 

al. 2006, 2009a), and fall movement (spatial heterogeneity, in this study). The interaction 

of these factors determines basin-wide smolt production. Lawson et al. (2004) called for 

an integrated model of coho salmon production driven by environmental variability over 

the entire life cycle. The fall movement of juvenile coho salmon, which provides for 

connectivity of summer and winter habitat, should be considered an essential 

component to such a model. To further develop this component, next steps that build on 

my results would be to assess whether variability in spatial pattern of fall movement is 

observed elsewhere, to systematically identify the factors that influence this variability, 
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and to improve understanding of interactions between fall movement and subsequent 

overwinter survival and growth. 

Methodological benefits and limitations 

One of the challenges to movement studies is that movement occurs in both 

space and time, and thus the ability to detect movement is sensitive to the spatial and 

temporal resolution of study protocols. I was able to focus on the spatial characteristics 

of movement by defining a fixed time-period for observing movement. The definition of 

Lawson et al. (2004) for the start of the fall transition period, developed for spawning 

adult coho salmon, corresponded with the start of fall movement for juveniles. The 

increased movement of juvenile coho salmon (Figure 3) with the onset of the fall 

transition is similar to increases in the number of fish captured in weir traps coincident 

with the first fall freshets in other Pacific coastal basins (Skeesick 1970, Cederholm and 

Scarlett 1983, Bramblett et al. 2002). Lawson et al. (2004) did not provide a definition of 

the end of the fall transition period, but the metric I used captured the majority of fall 

movement and the decline in detections with the onset of winter, consistent with 

previous reports (Bramblett et al. 2002, Giannico and Hinch 2003).   

Evidence in the time-series plots of daily detection suggests that there is 

variation in the expression of fall movement among years, particularly in 2004 when the 

fall transition was much earlier than in other years (Figure 3c). In addition, the winter of 

2004 was relatively mild, with only one large winter storm flow (Ebersole et al. 2009a). 

Interannual climate variability has a large influence on the freshwater survival of coho 

salmon (Lawson et al. 2004, Wigington et al. 2006) and may also affect movement. In 

particular, I found that juvenile coho salmon may have been less likely to emigrate from 
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Gold Creek and Upper Mainstem in 2004 (Hance, unpublished data). However, in the 

current study, I was interested in the spatial characteristics of fall movement, and 

combining all the years permitted a more complete spatial representation for each 

detection site. This choice likely masked some yearly variation in the pattern of 

movement that may have biological implications, and thus future investigators may wish 

to evaluate the effect of interannual climate variability on the expression of fall 

movement. 

The strategy I adopted to analyze these data overcomes some limitations of an 

unknown detection efficiency to draw qualitative inferences about the relative likelihood 

of movement during the fall transition. I was able to demonstrate that given an unknown, 

but assumed constant detection efficiency, odds ratios from logistic regression can be 

used to evaluate qualitative differences between groups of tagged of fish. This analysis 

technique can be adapted to similar mark-recapture situations where research questions 

permit qualitative answers and a constant detection efficiency can be assumed. Data sets 

similar to that for the WFSR may have been collected in other basins; for example, in 

culvert passage studies. Additional value may be gained from analyzing those data using 

odds ratios and logistic regression. However, when detection efficiency is not constant, if, 

for example, emigrating fish were more likely to be detected than immigrating fish, then 

the odds ratio of detection will be biased. In such a case, where detection efficiency is 

positively correlated with the same covariates as the probability of movement, the bias 

may result in an estimated odds ratio of less than one when the true odds ratio is greater 

than one and thus qualitative comparisons and subsequent conclusion may be wrong 

(Gu and Swihart 2004).  
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It is important to emphasize that the measures I utilized, the likelihood of 

detections between two directions and the odds ratio of detection for a doubling of 

distance in a fixed direction, are indicators of functional connectivity between mainstem 

and tributary habitat. Because of the unknown detection efficiency, some fish that moved 

to the detection site were not detected. Of those fish that were detected, some fish may 

travel further than the detection site and some fish may only temporarily enter or leave 

tributary streams. For these reasons, no inference is made about the ultimate fate of fish 

detected at stationary antennas. Additionally, fish may move from the location in which 

they were tagged, but not to a detection site. 

The spatial arrangement of this study, stationary PIT-tag monitoring stations 

with tagging locations over a wide spatial extent, could be improved to answer other 

questions about the seasonal movement of stream fish. For example, to understand the 

change in relative distribution of fish between the tributary and mainstem during the 

fall, detection sites should be placed on all three sides of each confluence. Stationary 

monitoring of PIT-tagged fish was relatively novel at the time of the field study. Recent 

techniques have improved the estimation of detection efficiency in the field (Zydlewski 

et al. 2006, Horton et al. 2007). Accurate and precise estimates of detection efficiency 

would allow for a more rigorous quantitative estimate of the probability of movement to 

the detection site in future studies. Thus, the spatial arrangement of many marking 

locations and multiple recapture locations enables quantitative assessment of movement 

likelihood over a long range of distances and evaluation of basin-scale variability in the 

spatial pattern of movement. As such, this method should be considered complementary 

to existing mark-recapture techniques (Rodriquez 2002, Fujiwara et al. 2006), which are 
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typically limited to a few reaches, and to other methods for detecting movement of 

stream fishes.  

Conclusions 

This study provides statistical evidence that the pattern of fall movement of 

juvenile coho salmon varies among tributaries of the West Fork Smith River. Differences 

in the pattern of fall movement of juvenile coho salmon through tributary confluences 

reflected differences in the physical characteristics and the network position of 

tributaries. However, the specific factors that influenced differences in the likelihood of 

emigration or immigration could not be determined from this study. Although the 

unknown detection efficiency limited inferential ability, my results suggest productive 

avenues of future research using a similar spatial design of multiple fish tagging and 

detection locations. Variation among tributaries in the spatial pattern of fall movement 

of juvenile coho salmon shows that the functional connectivity of mainstem and 

tributaries may be more complex than has previously been reported. Assuming that fish 

don’t move, or that the pattern of fish movement is generally the same everywhere in the 

stream network, is likely to yield erroneous conclusions about the connectivity of 

overwintering habitat. Therefore, efforts to evaluate the connectivity of overwinter 

habitat when planning habitat restoration or conservation are best served by taking into 

account both the network position and the physical characteristics of a stream over a 

multi-kilometer scale.
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CHAPTER 3 

GENERAL CONCLUSION 
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This study provides statistical evidence that the pattern of fall movement of 

juvenile coho salmon varies among tributaries of the West Fork Smith River. Changes in 

the pattern of fall movement of juvenile coho salmon appeared to be linked to the 

physical characteristics of tributaries and to the network position of tributaries. Juvenile 

coho salmon were more likely to be detected when tagged close to the detection site, 

indicating that summer rearing locations are less connected to tributary confluences as 

distance increases.  However, for fish that moved downstream out of two upper-river 

tributaries, and for fish that moved into Moore Creek from the upper river, long-distance 

movements were more common.  This indicates that connectivity of tributaries to 

mainstem habitat is anisotropic and that Moore Creek, as a lower-river tributary, may 

have been important to juvenile coho salmon over a large spatial extent. 

The factors that may influence changes in the likelihood of emigration or 

immigration could not be determined from this study. Because the tributary streams had 

both different physical characteristics and different network positions, both elements 

may have influenced the results. Previous work has demonstrated that fish are more 

likely to emigrate from locally higher water velocities (Giannico and Healey 1998) and 

from habitat units that are lacking in large wood or are otherwise velocity refuges 

(McMahon and Hartman 1989, Bell et al. 2001). More work is needed to parse the 

influence of habitat unit-scale characteristics within the stream-segment-scale 

characteristics that I highlight.  

This analysis is the first to quantify the spatial pattern of fall movement as 

measured at stationary detection sites within tributary confluences. I found statistical 

evidence that each tributary varied from the others in at least one of the metrics 

considered, the relative likelihood of movement between two directions 
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(𝑂𝑅�𝑂𝑈𝑇:𝐼𝑁,𝑂𝑅�𝑈𝑃:𝐷𝑁) and the odds ratio of detection for a doubling of distance in a fixed 

direction (𝜔�). Although I was limited in the inference that I could make due the unknown 

detection efficiency, these shortcomings could be addressed in future field efforts using 

this same analytical method. 

The variation among tributaries in the spatial pattern of fall movement shows 

that fish movement may be more complex than has previously been reported. Therefore, 

efforts to evaluate the connectivity of overwinter habitat when planning habitat 

restoration or conservation are best served by taking into account both the network 

position and the physical characteristics of a stream over a multi-kilometer scale. 

Assuming that fish don’t move, or that the pattern of fish movement is generally the 

same everywhere in the stream network, are likely to yield erroneous conclusions.
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