Understanding watershed-scale variation in juvenile salmonid survival and growth can provide insights into factors influencing demographics and can help target restoration and mitigation efforts for imperiled fish populations. We assessed growth, movement, and apparent overwinter survival of individually tagged juvenile coho salmon Oncorhynchus kisutch in a coastal Oregon watershed from June 2002 to June 2003 and related growth and survival parameters to stream characteristics. Fall body size of juvenile coho salmon was a good predictor of smolt size and survival, but smolt size was also influenced by overwintering location. This was due to strong spatial patterns in winter growth rates associated with residency and movement into a small intermittent tributary. Though nearly dry in midsummer, this stream supported high densities of spawning coho salmon in the fall, and juveniles rearing there exhibited relatively high growth rates and emigrated as larger smolts. Improved winter growth and survival of juvenile coho salmon utilizing tributary habitats underscore the importance of maintaining connectivity between seasonal habitats and providing a diversity of sheltering and foraging opportunities, particularly where main-stem habitats have been simplified by human land uses.